H.H. THE RAJAH'S COLLEGE (AUTONOMOUS) PUDUKKOTTAI - 622 001

PG & RESEARCH DEPARTMENT OF CHEMISTRY

M.Sc., CHEMISTRY COURSE STRUCTURE UNDER CBCS

FOR THE STUDENTS ADMITTED FROM THE

ACADEMIC YEAR2023 – 2024 ONWARDS

M.Sc., CHEMISTRY - SYLLABUS

2023-2024

THE VISION AND MISSION OF THE DEPARTMENT

VISION

We provide society with people serving, skilled and problem solving professionals in chemical sciences

MISSION

Provide our society with high quality professionals having a strong education and technical skills in chemistry; with rich cultural, ethical, environmental, and social sensitivities; capacity for critical thinking; and the entrepreneurial skills to solve industrial and environmental problems

TANSCHE REGU FRA	LATIONS ON LEARNING OUTCOMES-BASED CURRICULUM MEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc., Chemistry
Programme Code	
Duration	PG – 2YEARS
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
	POA: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
	 PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals. PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment
	I I I I I I I I I I I I I I I I I I I
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.
Programme	PSO1 – Placement
Specific Outcomes (PSOs)	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.
	PSO 2 - Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.
PSO3 – Research and Development Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.
PSO4 – Contribution to Business World To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
PSO 5 – Contribution to the Society To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

Semester	Credi	Hour	Semester-II	Credi	Hour	Semester-	Credi	Hour	Semester-IV	Credi	Hour
_I	t	S		t	S	III	t	S		t	S
1.1Core-I	5	7	2.1Core-IV	5	6	3.1 Core- VII	5	6	4.1Core-XI	5	6
1.2 Core- II	5	7	2.2 Core-V	5	6	3.2 Core- VIII	5	6	4.2 Core-XII	5	6
1.3 Core – III	4	6	2.3 Core – VI	4	6	3.3 Core – IX	5	6	4.3 Project with viva voce	7	10
1.4 Elective - I Discipline Centric	3	5	2.4 Elective – III Discipline Centric	3	4	3.4 Core – X	4	6	 4.4 Elective - VI (Industry / Entrepreneurshi p) 20% Theory 80% Practical 	3	4
1.5 Elective- II Generic:	3	5	2.5 Elective -IV Generic:	3	4	3.5 Elective - V Discipline Centric	3	3	4.5 Skill Enhancement II	2	4
			2.6 Skill Enhanceme nt I	2	4	3.6 Skill Enhanceme nt course / Professional Competency Skill (Online objective)	2	3	4.6 Extension Activity	1	
						3.7 Internship/ Industrial Activity (30Hrs)	2	-			
	20	30		22	30		26	30		23	30
	1			1	Total C	redit Points -9	1		1	1	1

Part	First Year Semester-I	Max (Max	arks (100)	Credit	Hours per week (L/T/P)	
		CIA	UE	Ŭ		
	CC1 – Organic Reaction Mechanism-I (23PCH1)	25	75	5	7	
	CC2 – Structure and Bonding in Inorganic Compounds (23PCH2)	25	75	5	7	
	CC3 – Organic Chemistry Practical (23PCH3P)	25	75	4	6	
	Elective I (Generic / Discipline Specific) Pharmaceutical Chemistry (23PCHE1A) / Nanomaterials and Nanotechnology (23PCHE1B) /	25	75	3	5	
	Elective II (Generic / Discipline Specific) Pharmocognacy and Phytochemistry (23PCHE2A) / Molecular Spectroscopy (23PCHE2B)	25	75	3	5	
	Total			20	30	

Part	First Year Semester-II	Ma (Max	arks 100)	Credit	Hours per week(L/T/P)	
		CIA	UE		((con(2) 1)1)	
	CC4 – Organic reaction mechanism-II (23PCH4)	25	75	5	6	
	CC5 – Physical Chemistry-I (23PCH5)	25	75	5	6	
	CC6 – Inorganic Chemistry Practical (23PCH6P)	25	75	4	6	
	Elective III (Generic / Discipline Specific)					
	Medicinal Chemistry (23PCHE3A) / Green Chemistry	25	75	3	4	
	(23PCH E3B)					
	Elective-IV (Generic / Discipline Specific)					
	Bio Inorganic Chemistry (23PCHE4A) / Material	25	75	3	4	
	Science (23PCHE4B)					
	Skill Enhancement Course I – Industrial Chemistry	25	75	2	4	
	(23PCHSE1)	_				
	Total		1	22	30	

		Μ	arks		
Part	Second Year	(May	x 100)	edit	Hours per
	Semester-III	CIA	UE	Cr	week
	CC7 – Physical Chemistry-II (23PCH7)	25	75	5	6
	CC8 – Inorganic Chemistry-I (23PCH8)	25	75	5	6
	CC9 – Photochemistry and Pericyclic Reaction (23PCH9)	25	75	5	6
	CC10 – Physical Chemistry Practical – I (23PCH10P)	25	75	4	6
	Elective V – Polymer Chemistry (23PCHE5A) / Biomolecules and Heterocyclic compounds (23PCHE5B)	25	75	3	3
	Skill Enhancement Course - SEC I1 - Supramolecular Chemistry (Online) (23PCHSE2)	25	75	2	3
	Internship / Industrial Activity (23PIT) (30 hours)	Internship / Vacatior	/ Industrial - n Activity	2	
	Total			26	30

Second Year	Ma (Max	arks x 100)	Credit	Hours per	
Semester-1V	CIA	UE		week (L/T/P)	
CC11–Inorganic Chemistry-II (23PCH11)	25	75	5	6	
CC12 – Physical Chemistry Practical – II (23PCH12P)	25	75	5	6	
Core Project with viva voce (23PCHPW)	100		7	10	
Elective VI Nuclear and Radiation Chemistry (23PCHE6A) / Chemistry of Natural products (23PCHE6B)	25	75	3	4	
Skill Enhancement Course III - Analytical Chemistry (23PCHSE3)	25	75	2	4	
Extension Activity (23PEA)	Performance based assessment		1		
Total			23	30	

TOTAL CREDITS: 91

Finalized (for the I to IV Semester) in the

BOARD OF STUDIES MEETING HELD ON 19.02.2024 & APPROVED BY THE ACADEMIC COUNCIL ON _____

SEMESTER – I

Title of the	ORGANIC	REACTION	ME	CHANISM	- I		
Course							
Paper No.	Core I						
Category	Core	Year	Ι	Credits	5	Course	23PCH1
		Semester	Ι			Code	
Instructional	Lecture	201102001	Lal	h Practice		Total	
hours per	7		-			7	
week	,					,	
Prerequisites	Basic conce	epts of organic	chem	nistrv			
Objectives of	To underst	and the feasib	oility	and the me	chan	ism of various	s organic
the course	reactions.						8
	To compre	ehend the tea	chnia	ues in the	dete	ermination of	reaction
	mechanism	s.	. 1				
	To underst	and the conc	ept o	of stereoche	mistr	y involved in	organic
	compounds	•	1			5	e
	To correlate	e and appreciat	te the	differences	invol	ved in the vari	ous types
	of organic r	eaction mecha	nism	S.			• •
	To design	feasible syn	thetic	e routes fo	r the	preparation	of organic
	compounds	•					
Course	UNIT-I: M	lethods of De	termi	ination of F	leacti	ion Mechanisr	n: Reaction
Outline	intermediat	es, The tran	sitio	n state, R	eactio	on coordinate	diagrams,
	Thermodyn	amic and ki	inetic	requireme	nts	of reactions:	Hammond
	postulate.	Methods of d	etern	nining mech	anisn	n: non-kinetic	methods -
	product and	alysis, determi	natio	n of interme	ediate	s-isolation, det	tection, and
	trapping. C	cross-over expe	erime	ents, isotopio	e labe	elling, isotope	effects and
	stereo che	mical evidenc	es.	Kinetic met	hods	- relation o	f rate and
	mechanism	. Effect of stru	cture	on reactivit	y: Ha	mmett and Taf	t equations.
	Linear free	energy relation	nship	, partial rate	facto	or, substituent a	and reaction
	constants.						
	UNIT-II:	Aromatic	and	Aliphatic	Ele	ectrophilic S	ubstitution:
	Aromaticity	: Aromaticity	y in	benzenoid	, no	n-benzenoid,	heterocyclic
	compounds	and annulenes	s. Are	omatic electi	ophil	ic substitution:	: Orientation
	and reactive	vity of di- a	and	polysubstitu	ted	phenol, nitrob	enzene and
	halobenzen	e. Reactions	1nv	olving nitr	ogen	electrophiles	: nitration,
	nitrosation	and diazoniun	n col	upling; Sulp	nur e	electrophiles: s	ulphonation;
	Halogen el	fta alluvlation		ulon and bro	3111111C 1. mo	ution; Carbon e	A liphotio
	Friedel-Cra	a substitution	, acy Maab	$a = \frac{1}{2} $	aryn	SE; SE1 Ma	s. Anphatic
	electrophin		WIECH		anu	SEI, SEI- ME	chanisin and
		A romatic and	Alir	hatic Nuclo	onhil	ie Substitution	n. Aromatic
	nucleophili	A substitution	· M	echanisms	ohun 2	a^{Ar} Syl and	d Benzyne
	mechanism	s - Evidences	$-\mathbf{R}\mathbf{P}$	echanishis activity Eff	- Dr Pecto	f structure les	ying group
	and attacki	ng nucleonbile	- KC 2 Ro	actions: Ovy	loci U Zgen	and Sulphur-n	ucleonhiles
	Bucherer a	nd Rosenmund	. NC 1 read	ections. UX	rgen Richte	and Sulphur-II	Hauser and
	Smiles rea	rangements	1 10a(Sw1	$\frac{1}{1000}$ ion nair S_{x}	12 m	echanisms and	evidences
	Alinhatic n	ucleonhilic sul	ostitu	tions at an a	allvlic	carbon alinha	atic trigonal
	carbon and	vinvl carbon S	N1 S	S_{N2} S _M i and	S _E 1	mechanism and	d evidences
	Swain- Sco	tt, Grunwald-V	Vinste	ein relations	nip - A	Ambident nucle	eophiles.

	UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and
	chirality – axis, plane, center, alternating axis of symmetry. Optical
	isomerism due to asymmetric and dissymmetric molecules with C, N, S
	based chiral centers. Optical purity, prochirality, enantiotopic and
	diastereotopic atoms, groups, faces, axial and planar chirality, chirality due
	to helical shape, methods of determining the configuration. Racemic
	modifications: Racemization by thermal, anion, cation, reversible
	formation, epimerization, mutarotation. D, L system, Cram's and Prelog's
	rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold-
	Prelog rules, absolute and relative configurations. Configurations of
	allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and
	cyclophanic compounds, exo-cyclic alkylidene-cycloalkanes. Topicity and
	prostereoisomerism, chiral shift reagents and chiral solvating reagents.
	Criteria for optical purity: Resolution of racemic modifications,
	asymmetric transformations, asymmetric synthesis, destruction.
	Stereoselective and stereospecific synthesis.
	UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic
	systems, intramolecular rearrangements, neighbouring group participation,
	chemical consequence of conformational equilibrium - Curtin-Hammett
	Principle. Stability of five and six-membered rings: mono-, di- and
	polysubstituted cyclohexanes, conformation and reactivity in cyclohexane
	systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins
	and Brett's rule. Optical rotation and optical rotatory dispersion,
	conformational asymmetry, ORD curves, octant rule, configuration and
	conformation, Cotton effect, axial haloketone rule and determination of
	configuration.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE / TNPSC others to
Component (1s	be solved
a part of	(To be discussed during the Tutorial hours)
internal	
component	
only, Not to be	
included in the	
external	
examination paper)	
Skills acquired	Knowledge Problem solving Analytical ability Professional Competency
from this	Professional Communication and Transferable skills
course	Toressional Communication and Transferable skins.
Recommended	1 I March and M Smith Advanced Organic Chemistry 5 th edition
Tevt	I. J. Watch and W. Shifti, Advanced Organic Chemistry, 5° cutton, John-Wiley and Sons 2001
ICAL	2 F S Gould Mechanism and Structure in Organic Chemistry Holt
	Rinehart and Winston Inc. 1959
	3. P.S.Kalsi, Stereochemistry of carbon compounds 8 th edition New
	Age International Publishers, 2015
	4. P. Y. Bruice, Organic Chemistry, 7 th edn. Prentice Hall, 2013
	5. J.Clavden, N. Greeves, S. Warren, Organic Compounds, 2 nd edition
	Oxford University Press. 2014.
	,, _,

Reference	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A								
Books	and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.								
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.								
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.								
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw								
	Hill, 2000.								
	5. I. L. Finar, Organic chemistry, Vol-1 & 2, 6 th edition, Pearson								
	Education Asia, 2004.								
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-								
e-learning	chemistry/organic								
source	2. https://www.organic-chemistry.org/								

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CLO1: To recall the basic principles of organic chemistry.

CLO2: To understand the formation and detection of reaction intermediates of organic reactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CLO5: To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S
Ctuona	2	•	•	•	N	d:	•	•		Low 1

CO-PO Mapping (Course Articulation Matrix)

Strong - 3

Medium-2

Low-1

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

3 - Strong, 2 - Medium, 1 - Low

	Methods of Evaluation					
	Continuous Internal Assessment Test					
Internal	Assignments	25 Mortza				
Evaluation	Seminars					
	Attendance and Class Participation					
External Evaluation	End Semester Examination	75 Marks				
	Total	100 Marks				
	Methods of Assessment					
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions.					
Understand/	MCO True/False Short assays Concept evaluations short summary or					
Comprehend	overview					
(K2)						
Application	Suggest idea/concept with examples, suggest formulae, solve problems,					
(K3)	Observe, Explain.					
A polyzo (KA)	Problem-solving questions, finish a procedure in many steps,					
Allalyze (K4)	Differentiate between various ideas, Map knowledge.					
Evaluate (K5)	Longer essay/ Evaluation essay, Critique of	or justify with pros and cons.				
Croata (K6)	Check knowledge in specific or offbeat si	tuations, Discussion, Debating				
Create (Ko)	or Presentations.					

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Title of the	STRUC	FURE ANI	BO	NDING IN	N INC	DRGANIC CO	OMPOUNDS
Course							
Paper No.	Core II						
Category	Core	Year	Ι	Credits	5	Course	23PCH2
		Semester	Ι			Code	
Instructional	Lecture	Lab Prac	tice		•	Total	
hours per week	7	-				7	
Prerequisites	Basic con	ncepts of In	lorga	nic Chem	istry		
Objectives of the	To deterr	nine the stu	ructur	al propert	ies of	f main group o	compounds and
course	clusters.						
	To gain	fundamenta	al kn	owledge o	on th	e structural a	spects of ionic
	crystals.			-			
	To famili	arize variou	s diff	raction and	d mic	roscopic techn	iques.
	To study	the effect of	f poir	t defects a	nd lir	ne defects in ion	nic crystals.
	To evalua	te the struc	tural	aspects of	solids	5.	2
Course Outline	UNIT-I:	Structure	of r	nain grou	ip co	mpounds and	d clusters: VB
	theory -	Effect of lo	ne pa	ir and elec	trone	gativity of ator	ms (Bent's rule)
	on the ge	eometry of	the n	nolecules;	Struc	ture of silicate	s - applications
	of Pauli	ngs rule of	f ele	ctrovalenc	e - i	somorphous r	replacements in
	silicates	– ortho. n	neta	and pyro	silica	ates – one di	mensional. two
	dimensio	nal and th	ree-d	imensiona	l sili	cates. Structur	re of silicones.
	Structura	l and bondi	ng fe	atures of F	R-N S	S-N and P-N co	ompounds: Poly
	acide	types ever	mpla	and stru		s: Borana clu	ster: Structural
	footuroo	of alogo n	ido	orochono	and 1	s, Dorane ciu	nos hotoro and
	reatures		100,			Ciado; cardoral	The second secon
	metallob	branes; wa		rule to pre		ne structure of	borane cluster;
	main gro	up clusters	-zint	1 ions and i	$\frac{mno}{r}$	ule.	1
		Solid stat	e che	emistry –	I: lon	nc crystals: Pa	cking of ions in
	simple, r	exagonal a	ina c	ubic close	e pac	king, voids in	crystal lattice,
	in crystal	a glide pla	nes a	and screw	avie	natures, Symm	nd space group:
	Solid st	ate energet	tics.	Lattice e	anis,	v = Born-Lar	id space group, ide equation -
	Kapustin	ski equation	n. Ma	delung cor	istant	. Dorn Lui	lue equation
	UNIT-II	I: Solid sta	te ch	emistrv –	II: S	tructural featur	res of the crystal
	systems:	Rock salt,	zinc	blende &	wurt	zite, fluorite a	nd anti-fluorite,
	rutile and	anatase, ca	ıdmiu	m iodide a	and ni	ickel arsenide;	Spinels -normal
	and inver	se types a	nd pe	rovskite s	tructu	res. Crystal G	rowth methods:
	From me	lt and solu	tion	(hydrother	mal,	sol-gel metho	ds) – principles
	and exam	ples.					
	UNIT-IV	': Techniq	ues i	n solid s	tate	chemistry: X-	ray diffraction
	technique	: Bragg's	law,	Powder d	iffrac	tion method -	- Principle and
	Instrume	ntation; E	lectro	on diffra	action	technique	– principle,
	instrumentation and application. Electron microscopy – difference						
	between optical and electron microscopy, theory, principle,						
	instrumen	nation, sam	iping	methods a		prications of S	DIVI AILU I EIVI.
		Band theo	ory al	nd defects	in so	lids	·
	Band the	ory – teatur	es an	a its appli	catior	1 of conductors	s, insulators and
	semicono	luctors, Int	rinsic	e and ext	rinsic	semiconducto	ors; Defects in

	crystals - point defects (Schottky, Frenkel, metal excess and metal
	deficient) and their effect on the electrical and optical property, laser
	and phosphors; Linear defects and its effects due to dislocations.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
	4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders
	company: Philadelphia, 1977.
	5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry;
	4th ed.; Harper and Row: NewYork, 1983.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John
	Wiley: New York, 1982.
	5. D. F. Shriver, P. W. Atkins and U.H. Langiord; Inorganic
	Chemistry; 5rd ed.; Oxford University Press: London, 2001.
website and	nttps://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	Tall-2018/v1deo_galleries/lecture-v1deos/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos					

Title of the	ORGAN	IC CHEM	ISTR	Y PRAC	ГІСА	L		
Course								
Paper No.	Core III							
Category	Core	Year	Ι	Credits	4	Course	23PCH3P	
		Semester	Ι			Code		
Instructional	Lecture	Lab Prac	tice			Total		
hours per week	-	6				6		
Prerequisites	Basic con	cepts of or	rganie	c chemistr	·у			
Objectives of the	To under	stand the	conc	ept of se	parat	ion, qualitativ	ve analysis and	
course	preparatio	on of organi	ic con	npounds.				
	To devel	op analytic	al ski	ill in the	hand	ling of chemi	ical reagents for	
	separation	n of binary	and te	ernary orga	anic n	nixtures.	C	
	To analy	ze the se	narate	ed organi	CO1	mponents sv	stematically and	
	derivatize	them suita	blv	u organi		inponents sys	stematically and	
	To constr	uct suitabl	e exn	erimental	setur	o for the orga	anic preparations	
	involving	two stages			1	8	r r r	
	To exper	iment diffe	erent	purification	on ar	nd drying tec	chniques for the	
	compoun	d processin	g.	1			1	
Course Outline	UNIT-I:	Separation	n and	analysis:				
	A. Two	o componer	nt mix	tures.				
	UNIT-II:	Estimation	ns:					
	a)]	Estimation	of Phe	enol (brom	inati	on)		
	b)]	Estimation	of An	iline (bron	ninati	on)		
	c)]	Estimation	of Eth	yl methyl	ketor	ne (iodimetry)		
	d)]	Estimation	of Glu	icose (rede	ox)			
	e)	Estimation	of Gly	ycine (acid	limeti	y)		
	UNIT-II	l: Two stag	ge pre	parations	:			
	a) p	a) <i>p</i> -Bromoacetanilide from aniline						
	b) p -Nitroaniline from acetanilide							
	c) 1,3,5-Iribromobenzene from aniline							
	a) Acetyl sancychic acid from metnyl sancylate							
	f m	e) Benzinc acid from benzoin f) w Nitrooniling from pitrobanzana						
	m-Nitrobenzoic acid from methyl benzoate							
	5, 11		<u></u>			·		
Extended	Question	s related to	the at	ove topics	s, from	n various com	petitive	
Professional	examinat	ions UPSC	/ TRE	3 / NET/ U	GC-0	CSIR / GATE	/TNPSC others	
Component (1s a	to be solv	to be solved						
component only	(To be discussed during the Tutorial hours)							
Not to be included								
in the external								
examination								
question paper)								
Skills acquired	Knowled	ge, Problem	ı solv	ing, Analv	tical	ability. Profes	sional	
from this course	Competer	ncy, Profess	sional	Commun	icatio	n and Transfe	rable skills.	
Recommended	1. A R	West, Solic	l state	Chemistr	y and	its application	ns, 2ndEdition	
Text	(Stud	lents Editio	on), Jo	hn Wiley	& So	ns Ltd., 2014.	,	

	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by various chemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5: To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Course Paper No. Elective I Category Elective Vear I Credits Course 23PCHE1A
Paper No. Elective I Category Elective Vear I Credits 3 Course 23PCHF1A
Category Elective Year I Credits 3 Course 23PCHF1A
$ \cup u \cup g \cup j = \cup U \cup u \cup v \cup \cup u \cup v \cup v$
Semester I Code
Instructional Lecture Lab Practice Total
hours per week 5 - 5
Prerequisites Basic knowledge on drugs and doses
Objectives of the To understand the advanced concepts of pharmaceutical chemistry.
course To recall the principle and biological functions of various drugs.
To train the students to know the importance as well the consequence
of various drugs.
To have knowledge on the various analysis and techniques.
To familiarize on the drug dosage and its structural activities.
Course Outline UNIT-I: Physical properties in Pharmaceuticals: Physical properties
of drug molecule: physical properties. Refractive index- Definition
explanation, formula, importance, determination, specific & molar
refraction. Optical activity/rotation- monochromatic & polychromatic
light, optical activity, angle of rotation, specific rotation examples
measurement of optical activity. Dielectric constant & Induced
Polarization- Dielectric constant explanation & determination
Rheology of pharmaceutical systems: Introduction, Definition
Applications, concept of viscosity, Newton's law of flow, Kinematic
Relative, Specific, Reduced & Intrinsic viscosity. Newtonian system.
non-Newtonian system- Plastic flow, Pseudoplastic flow, Dilatent flow,
viscosity measurements- selection of viscometer for Newtonian and
INIT II. Isotopia Dilution analysis, principle and applications
Neutron activation analysis: Principle advantages and limitations
Scintillation counters: Body scanning Introduction to
radiopharmaceuticals. Properties of various types of
radiopharmaceuticals. Radiopharmaceuticals as diagnostics. a
therapeutics, for research and sterilization. Physico Chemical Propertie
and drug action. Physico chemical properties of drugs (a) Partition
coefficient, (b) solubility (c) surface activity, (d) degree of ionization.
UNIT-III: Drug dosage and product development: Introduction to
drug dosage Forms & Drug Delivery system – Definition o
Common terms. Drug Regulation and control, pharmacopoeias
formularies, sources of drug, drug nomenclature, routes of
administration of drugs products, need for a dosage form
classification of dosage forms. Drug dosage and product development
Introduction to drug dosage Forms & Drug Delivery system -
Definition of Common terms. Drug Regulation and control
I nhommogonogias tormulamog commog of drug drug normal stars and the
pharmacopoetas formularies, sources of drug, drug nomenciature, routes
of administration of drugs products, need for a dosage form
of administration of drugs products, need for a dosage form classification of dosage forms.
of administration of drugs products, need for a dosage form classification of dosage forms. UNIT-IV: Development of new drugs: Introduction, procedure followed in drug design, the research for load compounds, molecular

	(SAR): Factors effecting bioactivity, resonance, inductive effect,
	isoterism, bioisosterism, spatial considerations, biological properties of
	simple functional groups, theories of drug activity, occupancy theory
	rate theory induced-fit theory 4.3 Quantitative structure activity
	relationship (OSAR): Development of OSAR drug receptor
	interactions the additivity of group contributions physico-chemical
	parameters lipophilicity parameters electronic parameter ionization
	constants staric parameters chelation parameters redox potential
	indicator veriables
	INIT V. Computing in Diamagantical Chamistry Need of
	UNIT-V: Computers in Pharmaceutical Chemistry: Need of
	computers for chemistry. Computers for Analytical Chemists-
	Introduction to computers: Organization of computers, CPU, Computer
	memory, I/O devices, information storage, software components.
	Application of computers in chemistry: Programming in high level
	language (C+) to handle various numerical methods in chemistry –
	least square fit, solution to simultaneous equations, interpolation,
	extrapolation, data smoothing, numerical differentiation and
	integrations.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Physical Chemistry- Bahl and Tuli.
Text	2. Text Book of Physical Pharmaceutics, IInd edition, Vallabh
	Prakashan C.V.S. Subramanyam.
	3. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R
	Chatwal, Himalaya Publishing house.
	4. Instrumental method of Analysis: Hubert H, Willard, 7th edition.
	5. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S.
	Chand & company Ltd. Pharmaceutical Chemistry by Dr. S.
	Lakshmi, Sultan chand & Sons.
Reference Books	1. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993.
	2. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate
	prakashan., 2 nd edition, New age international (P) limited, New
	Delhi.
	3. Physical Pharmacy and Pharmaceutical Sciences by Martins,
	Patrick J. Sinko, Lippincott, William and Wilkins.
	4. Cooper and Gunn's Tutorial Pharmacy .6th edition by S.J. Carter.
	CBS Publisher Ltd.
	5. Ansels pharmaceutical Dosage forms and Drug Delivery System by
	Allen Popyich and Ansel, Indian edition-B.I. Publication Pyt. Ltd.

Website and https://www.ncbi.nlm.nih.gov/books/NBK482447/										
e-learning source	ig source <u>https://training.seer.cancer.gov/treatment/chemotherapy/types.html</u>									
0										
Course Learning C	Outcomes (for Mapping with POs and PSOs)									
Students will be able:										
CO1: To identify th	e suitable drugs for various diseases.									
CO2: To apply the	principles of various drug action and drug design.									
CO3 : To acquire the knowledge on product development based on SAR.										
CO4: To apply the l	CO4 : To apply the knowledge on applications of computers in chemistry.									
CO5 : To synthesize	new drugs after understanding the concepts SAR.									

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

Level of Correlation	between	PSO's and	CO's
----------------------	---------	------------------	------

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	2.0	2.0	2.0	2.0	2.0

3	- Strong,	2 –	Medium,	1	-	Low
---	-----------	-----	---------	---	---	-----

Title of the	NANO MATERIALS AND NANO TECHNOLOGY						
Course							
Paper No.	Elective	[
Category	Elective	Year	Ι	Credits	3	Course	23PCHE1B
		Semester	Ι			Code	
Instructional	Lecture	Lab Prac	tice			Total	
hours per week	5	-				5	
Prerequisites	Basic kn	owledge of	cryst	allograph	y and	l material scie	nce
Objectives of the	To unders	stand the co	ncept	t of nano n	nateria	als and nano teo	chnology.
course	To unders	stand the va	rious	types of n	ano n	naterials and the	eir properties.
	To unde	rstand the	app	olications	of s	ynthetically in	mportant nano
	materials		11			5	1
	To correl	ate the char	acteri	istics of va	rious	nano materials	synthesized by
	new techn	ologies.					
	To design	synthetic r	outes	for synthe	eticall	y used new nar	no materials.
Course Outline	UNIT-I:	Introduction	n of r	nanomateri	als an	d nanotechnolo	ogies, Levels of
	structure	- Classifi	catior	n of mate	rials	- Introduction	n-role of size,
	classification	tion-0D, 11), 2D	, 3D. Feat	ures o	of nanostructure	es, Background
	of nanost	ructures. In	nporta	ance of na	noma	terials. Bondin	g and structure
	of the na	nomaterials	s, Pre	dicting the	e Typ	e of Bonding	in a Substance
	crystal s	tructure. C	lassif	fication of	f bor	ds: Primary	and secondary
	bonding	types. N	letalli	ic nanopa	article	es. Surfaces	of Materials.
	Nanonart	cle Size a	nd Pi	ronerties	Annli	cations of nan	omaterials and
	technolog	ies Nan	nd I I	ices Na	anom	agnets and	technologies
	Somicond	luctor no	nodo	vices. No	raoni	agilets and	etor devices
	nonotoch		noue	vices, 0	i gaint		ctor devices,
			D			cs.	
	UNIT-II	Synthesis	-Botto	om –Up,	l'op–l	Jown, consolic	ation of Nano
	powders.	Technique	es of	synthesis	to i	nanomaterials:	Physical and
	chemical	methods:	Nano	Lithograp	hy, N	Aolecular beam	n epitaxy, inert
	gas cond	ensation, a	rc dis	scharge, la	ser a	blation, sol-ge	l, solvothermal
	and hydr	othermal-C	VD-t	ypes, meta	allo c	rganic, Precipi	itation method,
	Reverse I	Micelle me	thod,	Sonochem	nical	method, Spray	Pyrolysis, Gas
	phase con	ndensation	meth	od Microv	wave	assisted and e	electrochemical
	synthesis						
	UNIT-II	: Mechani	cal p	properties	of m	aterials, theor	ies relevant to
	mechanic	al propertie	es. T	echniques	to st	udy mechanica	al properties of
	nanomate	rials, adh	lesion	n and f	rictio	n, thermal	properties of
	nanomate	rials Nanoj	partic	les: gold a	nd si	lver, metal oxi	des: silica, iron
	oxide an	d alumina	- syı	nthesis an	d pro	perties. Electr	ical properties,
	Conductiv	vity and F	kesist	ivity, Clas	ssifica	ation of Mate	rials based on
		vity, magne	tic pr	operties, e	lectro	nic properties of	or materials.
	UNIT-IV	: Carbon n	anon	iaterials: N	vature	c of C60 all c	hu, new carbon
	supercond	, caruon Inctivity i	raste	515. UISCOV	and	smaller full	erenes carbon
	nanotube	s synthesis	u Cl	ole walle	anu Leor	bon panotubes	structure and
	character	zation. me	chani	sm of form	natior	h. chemically n	nodified carbon

	nanotubes, doping, functionalizing nanotubes, and application of carbon nanotubes. Self-assembled monolayers – preparation, structure and application. Nanocapsules and nanowires. UNIT-V: Nano thin films, nanocomposites. Application of nanoparticles in different fields. Core-shell nanoparticles - types,
	synthesis, and properties. Nanocomposites - metal-, ceramic- and polymer-matrix composites-applications. Characterization – SEM, TEM, STM and AFM - principle, instrumentation and applications.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills
Reference Books	 S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications,2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007. S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications,2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications,2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2010
Website and e-learning source	 <u>http://xrayweb.chem.ou.edu/notes/symmetry.html</u>. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u>.
Course Learning C Students will be able CO1: To explain me CO2: To relate the material. CO3: To describe to CO4: To discuss ap	Dutcomes (for Mapping with POs and PSOs) e: ethods of fabricating nanostructures. unique properties of nanomaterials to reduce dimensionality of the pols for properties of nanostructures. plications of nanomaterials.

CO5: To understand the health and safety related to nanomaterial.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	М	S	S	М	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	PHARMOCOGNOSY AND PHYTOCHEMISTRY							
Course								
Paper No.	Elective	V						
Category	Elective	Year	Ι	Credits	3	Course	23PCHE2A	
		Semester	Ι			Code		
Instructional	Lecture	Tutorial	Lab	Practice		Total		
hours per week	5		-			5		
Prerequisites	Basic kno	wledge of c	hemi	strv		-		
Objectives of the	To devel	op the know	ledge	e of natura	l pro	ducts, biologica	al functions and	
course	pharmaco	ological uses			- r	,		
	To develo	op knowledg	ge on	primary a	and se	condary metab	olites and their	
	sources.					·		
	To under	stand the c	conce	pts of isc	olation	n methods and	d separation of	
	bioactive	compounds					_	
	To provid	le the knowl	edge	on selecte	d gly	cosides and ma	arine drugs.	
	To fami	liarize the	guio	delines of	f W	HO and diffe	erent sampling	
	technique	S.						
Course Outline	UNIT-I:	Pharmaco	gnos	y and St	anda	rdization of 1	Herbal drugs:	
	Introduct	on, definit	ion,	developm	ent d	classification a	and Source of	
	Drugs: B	iological, m	inera	l, marine,	and p	olant tissue cul	tures. Study of	
	pharmaco	gnostic of a	i cruc	le drug. B	iosyn	thesis: Shikimi	ic acid pathway	
	and ace	tate pathv	vay.	Systemat	tic	analysis of	Crude drugs.	
	Standardi	zation of H	erbal	drugs. W	HO g	guidelines, San	npling of crude	
	drug, Me	thods of di	rug e	valuation.	Dete	ermination of	foreign matter,	
	moisture	Ash value.	Phy	tochemica	al inv	vestigations-Ge	eneral chemical	
	tests.	T ()	T		0	1 .1 1	<u> </u>	
	UNIT-II	Extractio	n Te	chniques	: Ge	neral methods	of extraction,	
	types –	maceration,	Dec	oction, pe	ercola	tion, Immersio	on and soxflet	
	Advenced	l. I taabniquad		intor our	ont a	toom distillatio	n aunoraritical	
		ication Mi	cro w		tod o	straction Eactor	on, supercructat	
	choice of	extraction r	roces	aves assis			is affecting the	
		• Drugs	con	s. taining '	Tern	enoids and	volatile oils:	
	Terpenoi	l. Drugs ls Classifi	catio	n Isoprer	ne m	ile Isolation	and separation	
	technique	s General r	rone	rties Cam	nhor	Menthol Euca	alvotol Volatile	
	Oils or	Essential C)ils.	Method c	of Pr	eparations Cla	assifications of	
	Volatile	oils. Camr	hor	oil Gera	nium	oil. Citral-	Structure uses	
	Pentacycl	ic triterpe	noids	: amvrin	nes:	taraxasterol:	Structure and	
	pharmaco	logical appl	icatio	ons.	,			
	UNIT-IV	: Drugs	conta	ining all	caloio	ls: Occurrenc	e, function of	
	alkaloids	in plants, p	harm	aceutical	appli	cations. Isolati	on, Preliminary	
	Qualitativ	ve tests and	gene	ral proper	ties.	General metho	ds of structural	
	elucidatio	on. Morphir	ne, R	eserpine,	papa	verine - chem	ical properties,	
	structure	and uses. pa	pave	rine - struc	cture,	chemical prop	erties and uses.	
	UNIT-V:	Plant Gly	cosic	les and N	Marii	ne drugs: Gly	cosides: Basic	
	ring syste	em, classifi	catior	n, isolation	n, pr	operties, qualit	ative analysis.	
	Pharmaco	ological act	ivity	of Senna	u gly	cosides, Cardi	ac glycosides-	
	Digoxin,	digitoxin,	Ste	eroidal s	aponi	ns glycosides	s- Diosgenin,	
	hecogenin	n. Plant pi	gmen	ts: Occur	rence	e and genera	al methods of	

	structure determination, isolation and synthesis of quercetin and cyanidin chloride. Marine drugs -Selected Drug Molecules: Cardiovascular active substances, Cytotoxic compounds, antimicrobial compounds, antibiotic compounds, Anti-inflammatory agents. Marine toxins
Extended	Questions related to the above topics from various competitive
Professional	examinations LIPSC / TRB / NET/ LIGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only	(10 be discussed during the Tutorial nours)
Not to be included	
in the external	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Gurdeep R Chatwal (2016), Organic chemistry of Natural
Text	products, Volume I&II, 5th edition, Himalaya publishing House.
	2. S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of
	Natural Products, Revised edition, Narosa Publishers.
Reference Books	1. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to
	Modern Techniques of Plant Analysis, 4th edition, Indian reprint,
	Springer.
	2. Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2
	nd edition, New age international (P) limited, New Delhi.
Course Learning (Jutcomes (for Manning with POs and PSOs)

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the sources of natural medicines and analysis of crude drugs.

CO2: To understand the methods of evaluation based on various parameters.

CO3: To analyze the isolated drugs

CO4: To apply various techniques to discover new alternative medicines.

CO5: To evaluate the isolated drugs for various pharmacological activities

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	MOI FC		СТБ	PUSCUDA	7		
Course	WIOLEC	ULAN SI E			L		
Paper No.	Elective	Ι					
Category	Elective	Year	Ι	Credits	Course	23PCHE2B	
		Semester	Ι			Code	
Instructional	Lecture	Lab Pract	ice	•		Total	
hours per week	5	-				5	
Prerequisites	Basic kn	owledge of s	spect	roscopy			
Objectives of the	To unders	stand the inf	fluen	ce of rotat	ion a	nd vibrations	on the spectra of
course	the polya	tomic molec	ules.				
	To study	the principl	e of l	Raman spe	ectros	copy, ESR sp	pectroscopy, EPR
	spectrosc	opy and frag	gmen	tation patt	erns i	n Mass spect	roscopy.
	To highli	ght the sign	nifica	unce of Fr	anck	-Condon prin	nciple to interpret
	the select	ion rule, inte	ensity	y and types	s of e	lectronic tran	sitions.
	To interp	ret the first a	and s	econd orde	er NN	AR spectra in	terms of splitting
	and coup	ling pattern	ns us	sing corre	latior	n techniques	such as COSY,
	HETCOR	, NOESY.					
	To carry	out the str	ructu	ral elucida	ation	of molecule	s using different
~ ~ ~	spectral to	echniques.		- ~			
Course Outline	UNIT-I:	Rotational	and	Raman S	pect	roscopy: Rot	ational spectra of
	diatomic	and polyate	omic	molecule	s. Int	ensities of re	otational spectral
	lines, effe	ect of isotop	ic su	bstitution.	Non-	rigid rotators	. Classical theory
	of the Ra	man effect,	pola	rizability a	is a to	ensor, polariz	ability ellipsoids,
	quantum	theory of th	e Ra	man effec	t, Pu	re rotational l	Raman spectra of
	linear an	d asymmeti	ric to	op molecu	les,	Stokes and a	anti-Stokes lines.
	Vibration	al Raman sr	bectra	a, Raman a	activi	ty of vibration	ns, rule of mutual
	exclusion	, rotational	fine	structure-	O an	d S branches	s, Polarization of
	Raman sc	attered phot	ons.				

UNIT-II: Vibrational Spectroscopy: Vibrations of molecules,
harmonic and anharmonic oscillators- vibrational energy expression,
energy level diagram, vibrational wave functions and their symmetry.
selection rules, expression for the energies of spectral lines.
computation of intensities, hot bands, effect of isotopic substitution.
Diatomic vibrating rotor vibrational-rotational spectra of diatomic
molecules P R branches breakdown of the Born-Oppenheimer
approximation Vibrations of polyatomic molecules – symmetry
properties overtone and combination frequencies Influence of rotation
on vibrational spectra of polyatomic molecule P O R branches
parallel and perpendicular vibrations of linear and symmetric ton
molecules
INIT III: Electronic greatrogeony: Electronic Spectroscopy:
Electronic spectroscopy: Electronic Spectroscopy:
Electronic spectroscopy of diatomic molecules, Frank-Condon
principle, dissociation and predissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$
transitions and their selection rules. Photoelectron Spectroscopy: Basic
principles, photoelectron spectra of simple molecules, Xray
photoelectron spectroscopy (XPS). Lasers: Laser action, population
inversion, properties of laser radiation, examples of simple laser
systems.
UNIT-IV: NMR and ESR spectroscopy: Chemical shift, Factors
influencing chemical shifts: electronegativity and electrostatic effects;
Mechanism of shielding and deshielding. Spin systems: First order and
second order coupling of AB systems, Simplification of complex
spectra. Spin-spin interactions: Homonuclear coupling interactions -
AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin
decoupling. Nuclear Overhauser effect (NOE), Factors influencing
coupling constants and Relative intensities. 13CNMR and structural
correlations, Satellites. Brief introduction to 2D NMR - COSY,
NOESY. Introduction to 31P, 19F NMR. ESR spectroscopy
Characteristic features of ESR spectra, line shapes and line widths; ESR
spectrometer. The g value and the hyperfine coupling parameter (A),
origin of hyperfine interaction. Interpretation of ESR spectra and
structure elucidation of organic radicals using ESR spectroscopy; Spin
orbit coupling and significance of g-tensors, zero/non-zero field
splitting, Kramer's degeneracy, application to transition metal
complexes (having one to five unpaired electrons) including biological
molecules and inorganic free radicals. ESR spectra of magnetically
dilute samples.
UNIT-V. Mass Spectrometry FPR and Mossbauer Spectroscopy.
Inization techniques. Electron ionization (EI) chemical ionization
(CI) desorption ionization (EAP/MALDI) electrosproy ionization
(C1), ussorption forization (FAD/WALDI), electrospray forization
(LSI), isotope abundance, molecular ion, fragmentation processes of
frequentities, deduction of structure infough mass spectral
magnentation, high resolution. Effect of isotopes on the appearance of
mass spectrum. EPK spectra of anisotropic systems - anisotropy in g-
value, causes of anisotropy, anisotropy in hyperfine coupling,
nyperime splitting caused by quadrupole nuclei. Zero-field splitting
(ZFS) and Kramer's degeneracy. Applications of EPR to organic and
inorganic systems. Structural elucidation of organic compounds by

	combined spectral techniques. Principle of Mossbauer spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.

Recommended	1.	C. N. Banwell and E. M. McCash, Fundamentals of Molecular
Text		Spectroscopy, 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
	2.	R. M. Silverstein and F. X. Webster. <i>Spectroscopic Identification</i>
		of Organic Compounds 6 th Ed John Wiley & Sons New York
		2003.
	3.	W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book
		Society, 1987.
	4.	D. H. Williams and I. Fleming, Spectroscopic Methods in Organic
		Chemistry, 4th Ed., Tata McGraw-Hill Publishing Company, New
		Delhi, 1988.
	5.	R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders:
		Philadelphia, 1992.
Reference Books	1.	P.W. Atkins and J. de Paula, Physical Chemistry, 7th Ed., Oxford
		University Press, Oxford, 2002.
	2.	I. N. Levine, Molecular Spectroscopy, John Wiley & Sons, New
		York, 1974.
	3.	A. Rahman, Nuclear Magnetic Resonance-Basic Principles,
		Springer-Verlag, New York, 1986.
	4.	K. Nakamoto, Infrared and Raman Spectra of Inorganic and
		coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,
		New York, 1997.
	5.	J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>
		Resonance; Wiley Interscience, 1994.
Website and	1. <u>ht</u>	tps://onlinecourses.nptel.ac.in/noc20_cy08/preview
e-learning source	2. <u>ht</u>	tps://www.digimat.in/nptel/courses/video/104106122/L14.html
Course Learning C	Jutco	mes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹F NMR and ESR spectroscopic techniques.

CO5: To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

SEMESTER – II

Title of the	ORGANIC REACTION MECHANISM-II							
Course	UNGAINIC	NEACTION N	MEC.	naniswi-ii				
Paper No.	Core IV							
Category	Core	Year	Ι	Credits	5	Course	23PCH4	
		Semester	II			Code		
Instructional	Lecture	Lab Practice				Total		
hours per	6	-				6		
week								
Prerequisites	Basic know	ledge of organi	c che	emistry				
Objectives of	To understa	nd the concept	t of	aromaticity in	n ber	nzenoid, non-b	benzenoid,	
the course	heterocyclic	and annulene c	ompo	ounds.				
	To understa	and the mecha	anism	involved ir	n vai	rious types o	f organic	
	reactions with	th evidences.						
	To understar	nd the application	ons of	f synthetically	imp	ortant reagents		
	To correlate	the reactivity b	etwee	en aliphatic an	id arc	matic compou	nds.	
	To design sy	nthetic routes f	or sy	nthetically use	ed org	ganic reactions		
Course	UNIT-I: Eli	mination and	Free	Kadical Kea	ction	s: Mechanism	s: E2, E1,	
Outline	and E1cB	mechanisms. S	yn-	and anti-elim	inatio	ons. Orientatio	on of the	
	double bond	: Hoffmann and	d Say	tzeff rules. R	eacti	vity: Effect of	substrate,	
	attacking b	bases, leaving	gro	oup and me	ediun	n. Stereocher	nistry of	
	eliminations	in acyclic and	d cy	clic systems,	pyro	lytic eliminat	ion. Long	
	lived and s	hort-lived radio	cals -	- Production	of r	adicals by the	ermal and	
	photochemic	cal reactions, D	etecti	on and stabili	ity of	radicals, char	acteristics	
	of free ra	dical reactions	s an	d free radi	cal.	reactions of	radicals:	
	polymerizati	on addition	ł	alogenations	а. а	romatic sub	stitutions	
	rearrangeme	nts Reactivity	, I · Re	activity on al	u inhat	ic aromatic	substrates	
		the ettering re	. Kea	offect of colv	ipna	ic, aromatic s	substrates,	
	reactivity in	the attacking ra		, effect of solv	/ent.		D:	
	UNIT-II: (Dxidation and	Re	duction Rea	ction	s: Mechanisn	ns: Direct	
	electron tra	inster, hydride	e tra	nster, nydro	gen	transfer, disj	resortions	
	Machanism	of oxidation rad		e and redu	notio	e couping	solonium	
	diovides fe	or oxidation lea	rcuric	is. Dellyuluge	totr	acetate perm	, selelliulli	
	manganese (liovide osmiun	n tetr	ovide ovidati	on of	saturated hyd	rocarbons	
	alkyl groups	alcohols hali	des ai	and amines Re	actio	ns involving c	leavage of	
	C-C bonds	, deconois, name - cleavage of d	louble	e bonds, oxid	ative	decarboxylati	on allylic	
	oxidation.	oxidation by	chro	omium triox	ide-p	vridine. DM	SO-Oxalvl	
	chloride (Sw	vern oxidation)	and C	Corey-Kim ox	idatio	on, dimethyl s	ulphoxide-	
	dicyclohexy	l carbodiimide	(D	MSO-DCCD)	. M	echanism of	reduction	
	reactions:	Wolff-Kishner,	Ċle	mmenson, R	Rosen	mund, reduc	tion with	
	Trialkyl a	nd triphenylti	n h	ydrides, Mc	Fady	en-Steven's	reduction,	
	Homogeneo	us hydrogenatic	on, Hy	ydroboration v	with c	cyclic systems,	MPV and	
	Bouveault-B	lanc reduction.						
	UNIT-III: I	Rearrangemen	ts: R	earrangements	s to \overline{e}	lectron deficie	ent carbon:	
	Pinacol-pina	colone and ser	ni-pii	nacolone rear	range	ments -applic	ations and	
	stereochemis	stry, Wagner-N	/leerv	vein, Demjan	ov,	Dienone-pheno	ol, Baker-	
	Venkataram	an, Benzilic aci	d and	l Wolff rearra	ngen	ents. Rearrans	gements to	
	electron defi	cient nitrogen:	Hofn	nann, Curtius,	, Sch	midt, Lossen,	Beckmann	
	and abnormal Beckmann rearrangements. Rearrangements to electron							
-----------------	---							
	deficient oxygen: Baeyer-Villiger oxidation and Dakin rearrangements.							
	Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens,							
	[1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries							
	rearrangement. Intramolecular rearrangements – Claisen, abnormal Claisen,							
	Cope, oxy-Cope Benzidine rearrangements.							
	UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a)							
	Addition to carbon-carbon multiple bonds- Addition reactions involving							
	electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-							
	Orientation and reactivity, hydrogenation of double and triple bonds,							
	Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbon-							
	hetero atom multiple bonds: Mannich reaction, acids, esters, nitrites,							
	addition of Grignard reagents, Wittig reaction, Prins reaction.							
	Stereochemical aspects of addition reactions. Addition to Carbon-Hetero							
	atom Multiplebonds: Addition of Grignard reagents, organozinc and							
	Mechanism of condensation reactions involving englates –Stobbe reactions							
	Hydrolysis of esters and amides ammonolysis of esters							
	UNIT-V: Reagents and Modern Synthetic Reactions: Lithium							
	diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium							
	cyanoborohydride (NaBH ₃ CN), meta-Chloroperbenzoic acid (m-CPBA),							
	Dimethyl aminiopyridine (DMAP), n-Bu ₃ SnD, Triethylamine (TEA),							
	Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate							
	(DIAD), Diethylazodicarboxylate (DEAD), N-bromosuccinimide (NBS),							
	Irifluoroacetic acid (IFA), Ietramethyl piperiridin-1-oxyl (IEMPO), Deputationative tribromide (DTAD) Discomethons and Zn Cu							
	Diethyl maleate (DEM) Copper diacetylacetonate (Cu(acac)a) TiCla							
	NaIO ₄ Pyridinium chlorochromate (PCC) Pyridinium dichromate (PDC)							
	Meisenheimer complex. Suzuki coupling Heck reaction Negishi reaction							
	Baylis-Hillman reaction.							
Extended	Questions related to the above topics, from various competitive							
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to							
Component (is	be solved							
a part of	(To be discussed during the Tutorial hours)							
internal								
component								
only, Not to be								
avternal								
examination								
question								
paper)								
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,							
from this	Professional Communication and Transferable skills.							
course								

Recommended	1 I March and M Smith Advanced Organic Chemistry 5th ad
Text	1. J. Match and M. Shihit, Advanced Organic Chemistry, 5th ed., John Wilow and Song 2001
	John-whey and Sons. 2001.
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry,
	Holt, Rinehart and Winston Inc., 1959.
	3. P. S. Kalsi, Stereochemistry of carbon compounds, 8 th edn, New
	Age International Publishers, 2015.
	4. P. Y.Bruice, <i>Organic Chemistry</i> , 7 th edn., Prentice Hall, 2013.
	5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic
	Chemistry, 7 th edn., Pearson Education, 2010.
Reference	1. S. H. Pine, Organic Chemistry, 5 th edn, McGraw Hill
Books	International Editionn, 1987.
	2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing
	House, Bombay, 2000.
	3. E.S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt,
	Rinehart and Winston Inc., 1959.
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-
	Wiley, 2010.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organi
e-learning	<u>c-chemistry/organic</u>
source	2. https://www.organic-chemistry.org/
Course Learning	Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5: To design new routes to synthesis organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	PHYSIC	AL CHEM	ISTI	RY-I			
Course							
Paper No.	Core V						
Category	Core	Year	Ι	Credits	5	Course	23PCH5
		Semester	II			Code	
Instructional	Lecture	Lab Pract	tice			Total	•
hours per week	6	-				6	
Prerequisites	Basic con	ncepts of pl	nysica	al chemist	ry		
Objectives of the	To recall	the fundam	nental	ls of therm	nodyn	amics and the	composition of
course	partial me	olar quantiti	es.				
	To under	stand the cla	assica	al and statis	stical	approach of th	e functions
	To comp	are the sig	nifica	nce of M	axwe	ll-Boltzman, F	Fermi-Dirac and
	Bose-Ein	stein					
	To corre	late the th	neorie	es of read	ction	rates for the	e evaluation of
	thermody	namic para	meter	'S.			
	To study	the mechan	ism a	ind kinetic	$\frac{s \text{ of } r}{r}$	eactions.	
Course Outline	UNIT-I:	Classical	Th	ermodyna	mics	: Partial mo	olar properties-
	Chemical	potential,	Gıt	bb's- Duh	nem	equation-binar	y and ternary
	systems.	Determinati	ion of	f partial m	olar c	quantities. The	rmodynamics of
	real gase	s - Fugaci	ty- c	leterminati	ion c	of fugacity by	graphical and
	equation	of state m	ethoo	ls-depende	ence	of temperature	e, pressure and
	composit	ion. Thermo	odyna	amics of id	deal a	and non-ideal b	binary mixtures,
	Duhem -	- Margulus	equ	ation app	olicati	ions of ideal	and non-ideal
	mixtures.	Activity	and	l activity	v co	efficients-stand	dard states -
	determina	ation-vapou	r pres	ssure, EMF	Fand	freezing point	methods.
	UNIT-II	Statistica	al th	ermodyna	amics	s: Introduction	n of statistical
	thermody	namics co	oncep	ts of th	ermo	dynamic and	mathematical
	probabili	ies-distribu	tion	of disting	guish	able and non	-distinguishable
	particles.	Assemblie	es, e	nsembles,	can	onical particle	es. Maxwell -
	Boltzman	in, Fermi L	Dirac	& Bose-H	Linste	in Statistics- c	comparison and
	applicatio	ons. Partitio	n Iun	functions	luatio	on of translatio	onal, vibrational
	nolvatom	ionai part	nuon As T	hermodyn	amic	functions in te	rms of partition
	functions	-calculation	of e	auilibrium		stants Statistic	cal approach to
	Thermod	vnamic pro	operti	es: pressi	ire.	internal er	nergy, entropy.
	enthalpy,	Gibb's	func	tion, Hel	mhol	tz function re	sidual entropy,
	equilibriu	m constan	ts an	d equipar	tition	principle. He	eat capacity of
	mono an	d di atomic	gase	s-ortho an	id pai	ra hydrogen. H	leat capacity of
	solids-Ei	nstein and E	Debye	models.			
	UNIT-II	l: Irreversi	ble T	hermody	nami	cs: Theories of	conservation of
	mass and	energy en	tropy	productio	on in	open systems	by heat, matter
	and curre	nt flow, for	rce an	nd flux con	ncept	s. Onsager the	ory-validity and
	verification	on- Onsage	er re	ciprocal i	relatio	onships. Elect	ro kinetic and
	to biologi	cal systems	liect	s-Applicat	ion 0	of irreversible t	mermouynamics
		• Kinatios	of	Reactions	• Th	eories of read	tions_effect of
	temperati	re on rea	ction	rates co	ollisic	on theory of	reaction rates
	Unimoleo	cular react	ions	<u>-Li</u> ndema	<u>in</u> ar	nd Christianse	en hypothesis-

	molecular beams, collision cross sections, effectiveness of collisions,
	thermodynamic parameters of activation applications of APPT to
	reactions between stoms and molecules time and true order-kinetic
	parameter evaluation Eactors determine the reaction rates in solution -
	primary salt effect and secondary salt effect. Homogeneous catalysis-
	acid- base catalysis-mechanism of acid base catalyzed reactions-
	Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis.
	UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions chain reactions. Chain reactions-chain length kinetics of H ₂
	- $Cl_2 \& H_2 - Br_2$ reactions (Thermal and Photochemical reactions) -
	Rice Herzfeld mechanism. Study of fast reactions-relaxation methods-
	temperature and pressure jump methods electric and magnetic field
	jump methods -stopped flow flash photolysis methods and pulse
	radiolysis. Kinetics of polymerization-free radical, cationic, anionic
Extended	Ouestions related to the above topics from various competitive
Professional	examinations LIPSC / TRB / NET/ LIGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
Pagemmended	L Department of LC Kuriagosa Thermodynamics for Students of
Text	Chemistry 2nd edition S I N Chand and Co. Ialandhar 1986
ICAL	2. I.M. Klotz and R.M. Rosenberg. Chemical thermodynamics. 6th
	edition, W.A. BenjaminPublishers, California, 1972.
	3. M.C. Gupta, Statistical Thermodynamics, New Age International,
	Pvt. Ltd., New Delhi, 1995.
	4. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint -
	5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chamical transformation M camillan India I td. Paprint 2011
Reference Books	chemical transformation, w achiman mula Ltu, Reprint - 2011.
Reference Dooks	1. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A
	Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.
	2. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas
	Publishing, PVI. Ltd., New Delni, 1990.
	Chemistry Macmillan Publishers New York 1974
	4. K.B. Ytsijmiriski, "Kinetic Methods of Analysis" Pergamom
	Press,1996.
	5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Website and	1. https://nptel.ac.in/courses/104/103/104103112/
e-learning source	2. <u>https://bit.ly/3tL3GdN</u>

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5: To compare the theories of reactions rates and fast reactions.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

3	- Strong,	2 –	- Medium,	1	-	Low
---	-----------	-----	-----------	---	---	-----

Title of the	INORGA	NIC CHE	'MIS	TRY PRA	CTI	CAL	
Course							
Paper No.	Core VI						
Category	Core	Year	Ι	Credits	4	Course	23PCH6P
		Semester	II	-		Code	
Instructional	Lecture	Lab Prac	tice			Total	
hours per week	-	6				6	
Prerequisites	Basic pri	nciples of g	pravi	metric an	d aua	litative analy	sis
Objectives of the	To under	stand and e	enhan	ce the visi	ial ob	servation as a	n analytical tool
course	for the au	antitative e	stima	tion of ior		servation us u	in unuryticur toor
	To recall	the princip	le and	l theory in	prepa	ring standard	solutions.
	To train t	he students	for i	mproving	their	skill in estime	ating the amount
	of ion acc	urately pr	esent	in the solu	ition	SKIII III UStillite	ting the amount
	To estime	te metal io	ns n	resent in th	ne giv	en solution ac	curately without
	using inst	ruments	ns, p			en solution de	culately without
	To detern	ine the am	ount	of ions pr	esent	in a hinary mi	xture accurately
Course Outline		Analysis o	f miv	ture of co	tions	• Analysis of a	mixture of four
Course Outline	cations co	ntaining ty		mmon cati	ons a	nd two rare ca	tions Cations to
	be tested	intaining tv	0000		uns a	na two rate ea	dons. Cations to
	Group-I	· W 7	Fl and	l Ph			
	Group-II	·	гганс Ге М	o Cu Big	and C	d	
	Group-II	\cdot TI (re, m Pe Tł	7r V C	r Fe	u. Ti and U	
	Group-IV	· 7n	Ni C	o and Mn	I, I C,	Ti and C.	
	Group-IV	· Ca	Ra an	d Sr			
	Group-V	· Li a	nd Me	a 51. a			
		Prenarat	ion o	<u>5</u> . f metal c	mnl	ves. Prenarat	ion of inorganic
	complexe	s.		i metai e	ompro		ion or morganic
	a Prenara	s. tion of tris	thiom	reaconner(Dsuln	hate	
	h Prenar	tion of not	assim	m trioxalat	e chro	omate(III)	
	c. Prepara	tion of tetr	ammi	necopper(II) sul	lphate	
	d. Prepara	tion of Rei	neck	's salt	11) 5u	ipilate	
	e. Prepara	tion of hex	athio	ureaconne	r(I) cł	nloridedihydra	te
	f. Prepara	tion of <i>cis</i> -	Potas	sium tri oy	xalate	diaguachroma	nte(III)
	g. Prenar	tion of sod	ium t	rioxalatofe	errate	(III)	
	h. Prepara	tion of hex	athio	urealead(I	I) nitr	ate	
	UNIT-II	: Complex	romet	tric Titrat	ion:	ute	
	1 Estima	tion of zinc	nick	el magne	sium	and calcium	
	2. Estima	tion of mix	ture c	of metal ion	ns-nH	control mask	ing and
	demas	king agents				••••••••••••	
	3. Determ	ination of o	calciu	m and lead	d in a	mixture (pH c	control).
	4. Determ	ination of	mang	anese in th	e pres	sence of iron.	
	5. Determ	ination of	nickel	l in the pre	sence	of iron.	
		1 . 1		Pie			
Extended	Question	related to	the al	pove topic	s, fror	n various com	petitive
Protessional	examinat	ons UPSC	/ TRI	3 / NET/ U	JGC-(CSIR / GATE	TNPSC others
Component (is a	to be solv	ed			1	`	
part of internal	(To be di	scussed dur	ing th	ne Tutorial	hours	S)	
component only,							
Not to be included							

in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Text	Inorganic Qualitative Analysis, United global publishers, 2021.
	2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis;
	3rded., The National Publishing Company, Chennai, 1974.
	3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,
	London.
Reference Books	1. G. Pass, and H. Sutcliffe, Practical Inorganic Chemistry; Chapman
	Hall, 1965.
	2. W. G. Palmer, Experimental Inorganic Chemistry; Cambridge
	University Press, 1954.
Course Learning O	Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations.

CO5: To synthesize coordination compounds in good quality.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the Course	MEDICINAL CHEMISTRY									
Paper No.	Elective	II								
Category	Elective	Year	Ι	Credits	3	Course	23PCHE3A			
		Semester	II			Code				
Instructional	Lecture	Lab Pract	tice			Total				
hours per week	4	-				4				
Prerequisites	Basic knowledge of medicinal chemistry									
Objectives of the	To study	the chem	istry	behind th	e de	velopment of	pharmaceutical			
course	materials.						-			
	To gain k	nowledge o	n me	chanism a	nd act	tion of drugs.				
	To unders	tand the ne	ed of	antibiotic	s and	usage of drugs	3.			
	To famili	arize with t	he m	ode of act	ion of	f diabetic agen	its and treatment			
	of diabete	s.								
	To identi	y and apply	the	action of v	ariou	s antibiotics.				
Course Outline	UNIT-I:	Introducti	ion t	o recepto	rs: I	ntroduction, t	argets, Agonist,			
	antagonis	t, partial ag	onist	. Receptor	s, Red	ceptor types, T	heories of Drug			
	- recep	tor intera	action	1, Drug	Sy1	nergism, Dr	ug resistance,			
	physicoci	A ntibioti	Ors II	Introduction	arug	action.	tibiotics action			
		ion of onti	biotic		m, 1	argets of an	of action SAP			
	of penic	line and	tetra	voline ol	linica	a mechanism	of penicilling			
	cenhalosr	orin Currer	icuat it trei	nde in antil	niotic	therapy	or pentennins,			
		• Antihyn	erten	sive agen	ts an	d divretics. (Classification of			
	cardiovas	cular agent	ts. in	troduction	to 1	hypertension.	etiology, types.			
	classificat	ion of anti	hvpei	rtensive as	ents.	classification	and mechanism			
	of action	of diuretics.	, Fure	osemide, H	[ydroo	chlorothiazide.	, Amiloride.			
	UNIT-IV	: Antihyp	erten	sive agen	ts an	d diuretics: (Classification of			
	cardiovas	cular agent	ts, in	troduction	to 1	hypertension,	etiology, types,			
	classificat	ion of anti	hyper	rtensive ag	gents,	classification	and mechanism			
	of action	of diuretics	, Fure	osemide, H	[ydroo	chlorothiazide,	, Amiloride.			
	UNIT-V:	Analgesic	s, Ai	ntipyretics	and	Anti-inflam	matory Drugs:			
	Introducti	on, Mech	nanisı	n of in	nflam	mation, clas	sification and			
	mechanis	m of act	ion	and para	cetan	nol, Ibuprofe	n, Diclofenac,			
	naproxen	indometha	acin,	phenylbut	azone	e and meperic	line. Medicinal			
	Chemistr	of Antid	iabeti	ic Agents	Intro	duction, Type	es of diabetics,			
	Drugs us	ed for the	treatr	nent, chen	nical	classification,	Mechanism of			
	action, T	eatment of	diab	etic melli	us. C	Chemistry of in	nsulin, sulfonyl			
F (1.1	urea.	1 4 1 4 4	1 1	· ·	6	•	····			
Extended	Questions	related to t	the at \sqrt{TDI}	DOVE TOPICS	$\frac{1}{100}$	n various com	TNDSC others			
Component (is a	to be solv	ons UPSC		\mathbf{D} / \mathbf{NEI} / \mathbf{U}	UUU-U	SIK / GATE	/ INPSC others			
part of internal	(To be div	cussed dur	ina th	e Tutorial	hour	2)				
component only		cusseu uur	ing u		nour	5)				
Not to be included										
in the external										
examination										
question paper)										

Skills acquired	Knowledge, Problem solving, Analytical ability, Professional										
from this course	Competency, Professional Communication and Transferable skills.										
Recommended	1. Wilson and Gisvold's textbook of organic medicinal and										
Text	pharmaceutical chemistry,										
	2. Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William, 12th edition, 2011.										
	3. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th										
	edition, Oxford University Press, 2013. Jayashree Ghosh, A text										
	book of Pharmaceutical Chemistry, S. Chand and Co. Ltd. 1999.										
	1999 edn.										
	4. O. LeRoy, Natural and synthetic organic medicinal compounds,										
	Ealemi, 1976.										
	5.S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New										
	Delhi, 1993, New edn.										
Reference Books	1. Fove's Princles of Medicinal Chemistry, Lipincott Williams, Seventh										
	Edition, 2012										
	2. Burger's Medicinal Chemistry, Drug Discovery and										
	Development, Donald J. Abraham, David P. Rotella, Alfred										
	Burger, Academic press, 2010.										
	3. Wilson and Gisvold's Textbook of Organic Medicinal and										
	Pharmaceutical Chemistry, John M. Beale Jr and John M. Block,										
	4 D. Davimana, A. Taythank of Madical Chamistry, Navy Dalhi, CDS										
	Publishers 1995										
	5. S. Ramakrishnan, K. G. Prasannan and R. Rajan, Textbook of										
	Medical Biochemistry, Hyderabad: Orient Longman. 3 rd edition,										
	2001.										
Website and	1. https://www.ncbi.nlm.nih.gov/books/NBK482447/										
e-learning source	2. https://training.seer.cancer.gov/treatment/chemotherapy/types.html										
	3. https://www.classcentral.com/course/swayam-medicinal-chemistry-										
	12908										

Students will be able:

CO1: Predict a drugs properties based on its structure.

CO2: Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.

CO3: Explain the relationship between drug's chemical structure and its therapeutic properties.

CO4: Designed to give the knowledge of different theories of drug actions at molecular level.

CO5: To identify different targets for the development of new drugs for the treatment of infectious and GIT.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	GREEN CHEMISTRY										
Course											
Paper No.	Elective	II									
Category	Elective	Year	Ι	Credits	3	Course	23PCHE3B				
		Semester	II			Code					
Instructional	Lecture	Lab Prac	tice			Total					
hours per week	4	-				4					
Prerequisites	Basic kn	Basic knowledge of general chemistry									
Objectives of the	To d	iscuss	the	principl	es	of green	chemistry.				
course	To propos	se green sol	ution	s for chem	ical e	energy storage	and conversion.				
	Propose	green solut	tions	for indust	rial ₁	production of	Petroleum and				
	Petrocher	nicals.									
	Propose s	solutions fo	or pol	lution pre	ventio	on in Industria	l chemical and				
	fuel			1	1 01.1						
	productio Proposo	n, Automot	ive in	for indu	1 Snip	ping industries	S.				
	Organic a	nd inorgani	inons	ioi inu micele	istita	production	of Suffactants,				
	Organic a	inu morgani		anneais.							
Course Outline	UNIT-I-	Introductio	n- N	leed for (Treen	Chemistry (Goals of Green				
course outline	Chemistr	v. Limitati	ons/	of Green	Che	emistry. Chem	nical accidents.				
	terminolo	gies. Intern	ation	all green c	hemi	stry organizati	ons and Twelve				
	principles	of Green C	Chemi	istry with e	exam	ples.					
		Chains of	atout	, 	1		to and columnts				
	0 $1 + 11$		starti	ing materia	ais, re	eagents, catarys	sts and solvents				
	in detail,	Green chen	nistry	in day too	lay In	te. Designing g	green synthesis-				
	green re	agents: di	methy	l carbona	ate.	Green solvent	s: Water,Ionic				
	liquids-cr	iteria, gen	eral	methods of	of pr	reparation, effe	ect on organic				
	reaction.	Supercriti	ical	carbon	dioxic	de- properties	s, advantages,				
	drawback	s and a few	w exa	imples of	orgar	nic reactions ir	n scCO ₂ . Green				
	synthesis	adipic acid	and o	catechol.							
	UNIT-II	Environi	nenta	l pollutio	n, Gi	reen Catalysis-	-Acid catalysts,				
	Oxidation	catalysts,	Basic	c catalysts	, Poly	ymer supported	d catalysts-Poly				
	styrene a	aluminum	chlor	ide, polyi	neric	super acid	catalysts, Poly				
	supported	photosensi	itizers	5.							
	UNIT-IV	: Phase tra	nsfer	catalysis	in gro	een synthesis-o	oxidation using				
	hydrogen	peroxide	e, cr	own eth	ers-es	sterification,	saponification,				
	anhydride	e formation	n, El	imination	react	tion, Displace	ment reaction.				
	Applicati	ons in organ	nic sy	nthesis.							
	UNIT-V:	Micro	wave	e induce	d gi	reen synthesi	is-Introduction,				
	Instrumen	ntation, P	rincip	le and	appli	ications. Son	ochemistry –				
	Instrumen	itation, Ca	vitati	on theory	/ -	Ultra sound	assisted green				
T (1 1	synthesis	and Applic	ation	S	6						
Extended	Questions	s related to	the at	ove topics	s, from	n various comp	betitive				
Professional	examinati	ons UPSC	/ TRE	3 / NET/ U	GC-(CSIR / GATE /	TNPSC others				
Component (1s a	to be solv	ea	ing th	o Tutorial	hove						
part of internal		scussed dur	ing th	e rutorial	nours	8)					
Not to be included											
in the external											

• ,•	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,
Text	Anamalaya Publishers, 2005.
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	Chemical Engineering, 7 th edition, McGraw-Hill,
	NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall, 1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi,2001.
	5. A. K. De, Environmental Chemistry, New Age Publications,
	2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and
	Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry,
	American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	2. <u>https://www.organic-chemistry.org/</u>
e-learning source	3. <u>https://www.studyorgo.com/summary.php</u>

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organic synthesis.

CO5: To design and synthesize new organic compounds by green methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	BIO-INORGANIC CHEMISTRY								
Course									
Paper No.	Elective	IV				1			
Category	Elective	Year I		Credits	3	Course	23PCHE4A		
		Semester	II			Code			
Instructional	Lecture	Lab Pract	ice			Total			
hours per week	4	-				4			
Prerequisites	Basic kno	owledge of	chem	istry					
Objectives of the	To unders	stand the rol	e of t	trace eleme	ents.				
course	To unders	stand the bio	ologi	cal signific	ance	of iron, sulpur	•		
	To study	the toxicity	of m	etals in me	dicin	es.			
	To have k	nowledge o	n dia	gnostic ag	ents.				
	To discus	s on various	met	alloenzym	es pro	operties.			
Course Outline	UNIT-I:	Essential t	race	elements:	Sele	ective transport	t and storage of		
	metal ion	s: Ferritin, T	rans	ferrin and	sidor	phores; Sodiur	n and potassium		
	transport,	Calcium sig	gnalli	ing protein	s. M	etalloenzymes:	: Zinc enzymes–		
	carboxyp	eptidase an	d ca	arbonic a	nhydi	rase. Iron en	zymes–catalase,		
	peroxidas	e. Copper	enzyı	mes – sup	berox	ide dismutase,	, Plast ocyanin,		
	Cerulopla	smin, Tyros	sinase	e. Coenzyr	nes -	Vitamin-B12	coenzymes.		
	UNIT-II:	Transpor	t Pr	oteins: C)xvge	n carriers -H	emoglobin and		
	mvoglobi	n - Structu	e an	d oxygen	ation	Bohr Effect	Binding of CO		
	NO CN-	- to Myogl	ohin	and Hem	معاما	vin Biological	l redox system:		
	Cutochron	nog Classif		and field	ogiot	a h and a Cut	toohroma D 450		
	Cytochron	nes-Classif	·				.ochrome P-450.		
	Non-nem	e oxygen ca	rrier	s-Hemeryt	hrin	and nemocyan	in. Iron-sulphur		
	proteins-	Rubredoxin	and	Ferredoxir	1- Str	ucture and clas	sification.		
	UNIT-III	: Nitrogen	fixa	ation-Intro	oducti	ion, types of	nitrogen fixing		
	microorga	anisms. Niti	ogen	ase enzyn	ne -	Metal clusters	in nitrogenase-		
	redox pro	perty - Dir	itrog	en comple	exes	transition met	al complexes of		
	dinitrogen	n - nitroger	i fixa	ation via i	nitrid	e formation a	nd reduction of		
	dinitroger	to an	imon	ia. Phot	osyn	thesis: photo	osystem-I and		
	photosyst	em-II-chlor	ophy	lls structur	$\frac{e anc}{1}$	function.			
	UNIT-IV:	Metals in 1	medi	cine: Met	al To	xicity of Hg, (Cd, Zn, Pb, As,		
	SD. Thera	peutic Com	ipour	Ids: Vanac	llum-	Based Gold Co	ontaining drugs		
	as Allu-K	Containing	gents Ant	- Liuliuli	1 III f	Sychopharmac	cological drugs.		
	Flaununi-	Diagnos	AIII	Δ gents:	Tecl	hnotium Ima	aging Agents:		
	Gadoliniu	m MRI Im	uc agina	Agents. Δ gents '	Temr	perature and ci	ritical magnetic		
	Field	IVIINI IIII	ugill	ngems.	ıvın		mitai magnetie		
		Engeneration	Inte	oduction	and .	monortias	monoloture and		
	UNII-V:	ion Enzum	-intr	inetics fr	and j	properties -noi	vation and the		
	effects of	f catalveic	Mie K	helis - M	ce el Iento	nergy of activ	Fffect of pH		
	temperatu	re on enzyn	ne re	actions Fa	octore	contributing t	the efficiency		
	of enzym	e.				controuting t	s the efficiency		

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Williams, D.R. – Introdution to Bioinorganic chemistry.
Text	2. F.M. Fiabre and D.R. Williams– The Principles of Bioinorganic
	Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co.,
	USA.
	4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic
	Chemistry - 1993.
	5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry,
	S. Chand, 2001 .
Reference Books	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery
	Publishing House, New Delhi (1996)
	2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological
	processes, II Edition, Wiley London.
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Website and	1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-
e-learning source	the-instant-notes-chemistry-series-d162097454.html
	2. <u>https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-</u>
	5th-edition-d161563417.html
Course Learning C	Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: The students will be able to analyses trace elements.

CO2: Students will be able to explain the biological redox systems. **CO3**: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

CO5: Learn about the nitrogen fixation and photosynthetic mechanism.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	MATER	IAL SCIEN	NCE				
Course							
Paper No.	Elective	[V					
Category	Elective	Year	Ι	Credits	3	Course	23PCHE4B
		Semester	II	-		Code	
Instructional	Lecture	Lab Pract	tice			Total	
hours per week	4	-				4	
Prerequisites	Basic kn	owledge of	solid	-state cher	nistr	'V	
Objectives of the	To unde	rstand the	crys	tal struct	ure,	growth metho	ods and X-ray
course	scattering		2		,	6	5
	To explai	n the optica	l, die	lectric and	diffu	usion properties	s of crystals.
	To recog	nize the bas	sis of	semicond	luctor	rs, superconduc	ctivity materials
	and magn	ets.					-
	To study	the synthesi	is, cla	ssification	and	applications of	nanomaterials.
	To learn	about the i	mpor	tance of n	nateri	ials used for rea	newable energy
	conversio	n.					
Course Outline	1.1 UNIT	'-I: Crystal	llogra	aphy: sym	metr	y - unit cell and	d Miller indices
	-cryst	al systems ·	- Bray	vais lattice	s - p	oint groups and	l space groups -
	X-ray	diffraction	-Laue	e equation	s-Bra	agg's law-recipr	ocal lattice and
	its ap	plication to	o geo	ometrical	cryst	allography. Cr	ystal structure–
	powd	er and sing	gle c	rystal app	licati	ions. Electron	charge density
	maps,	neutron dif	ffracti	ion-metho	d and	applications.	
	1.2 UNIT	-II: Crys	stal	growth	meth	ods: Nucleat	ion–equilibrium
	stabili	ty and m	etasta	able state.	Sin	igle crystal –	Low and high
	tempe	rature, sol	ution	growth-	Gel	and sol-gel.	Crystal growth
	metho	ds- nucleat	10n-	equilibriu	n	stability and r	netastable state.
	Single	e crystal–Lo	ow an	d high ten	ipera	ture, solution g	rowth–Gel and
	sol-ge	al. Melt	grow	th - Br	ager	nan-Stockbarge	er, Czochralski
	Loron	tz and nota	rizoti	que, physi on factor	cal a	ary and second	apour transport.
		12 anu pola		crystols.	$\frac{\text{pm}}{\text{Opt}}$	ical studies	Electromagnetic
	spectrum	(qualitativ	e^{-1}	fractive in	dev	reflectance	transparency
	transluce	(quantative)	c) ic.	Types of 1	umin	= reflectance $=$ phot	o- electro- and
	injection	luminescen	ce I	EDs - org	vanic	Inorganic and	t polymer LED
	materials	- Applicat	ions.	Dielectric	stuc	lies- Polarisatio	on - electronic.
	ionic. ori	entation. an	d spa	ce charge	pola	risation. Effect	of temperature.
	dielectric	constant.	diele	ctric loss.	Tvt	bes of dielectr	ric breakdown–
	intrinsic,	thermal, dis	scharg	ge, electro	chem	ical and defect	breakdown.
	UNIT-IV	: Special	Mat	erials: Su	perco	onductivity: M	leissner effect,
	Critical	emperature	and	l critical	magi	netic Field, T	ype I and II
	supercond	luctors, BC	S the	ory-Coope	er pai	r, Applications	. Soft and hard
	magnets -	- Domain th	neory	Hysteresis	s Loo	p-Applications	. Magneto and
	gian mag	neto resista	ince.	Ferro, ferr	ri and	antiferromagn	netic materials-
	applicatio	ns, magnet	tic pa	rameters	for re	ecording applic	cations. Ferro-,
	Piezo-, ar	d pyro elec	etric r	naterials –	prop	perties and appli	ications. Shape
	memory	Alloys-cha	racter	ristics and	app	olications, Non	-linear optics-
	Second H	armonic G	enera	tors, mixir	ng of	Laser wavelen	gths by quartz,
	ruby and	LiNbO ₃ .					
	UNIT-V:	Materials	for H	Renewable	e Ene	ergy Conversio	n: Solar Cells:

	Organic, bilayer, bulk heterojunction, polymer, perovskite based. Solar energy conversion: lamellar solids and thin films, dye-sensitized photo voltaic cells, coordination compounds anchored onto semiconductor surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and splitting of water, CO2 and N2. Manganese based photo systems for water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE / TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge University Press 2012
	5. James F. Shackelford and Madanapalli K. Muralidhara. Introduction
	to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Reference Books	1.Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol
	Publications, New Delhi, 2001.
	2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and
	Company Ltd, 2001.
	3 C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
	4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private
	Limited, 1998.
	5. A.R. West, Solid State Chemistry and Applications, John-Wiley and
	sons, 1987.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u> .
	3. <u>https://bit.ly/3QyVg2R</u>

Students will be able:

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nanomaterials and renewable energy materials.

CO2: To integrate and assess the structure of different materials and their properties.

CO3: To analyse and identify new materials for energy applications.

CO4: To explain the importance of crystal structures, piezoelectric and pyroelectric materials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED uses, structures and synthesis.

CO5: To design and develop new materials with improved property for energy applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	М	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 -	- Strong,	2 –	Medium,	1	-	Low
-----	-----------	-----	---------	---	---	-----

Title of the	INDUSTR	IAL CHEM	ISTR	Y			
Course							
Paper No.	SEC I						
Category	SEC	Year	Ι	Credits	2	Course	23PCHSE1
		Semester	II			Code	
Instructional	Lecture	Lab Praction	ce	•		Total	
hours per week	3	-				3	
Prerequisites	Basic know	ledge of gen	eral cl	hemistry			
Objectives of	To learn th	e basic conce	onts of	Ceramics I	Refra	ctories and Ce	ment
the course	To learn th	e chemistry o	of Pigr	nents. Dves	and	Paints	mont
	To underst	and the import	rtance	of Fibers. P	lastic	es and Rubber	
	To study a	bout the Cher	nical l	Explosives a	and P	ropellants.	
	To learn th	e chemistry o	of Petr	oleum, Petr	ochei	nicals.	
Course Outline	LINIT I. C	Paramice Paf	ractor	ies and Cen	ant		
	Ceramics	Types basic	ractor	materials c	hemi	cal conversion	n whitewares
	manufacti	re of porcela	in	inatoriais, c	nenn		i, winte wares,
	Refractori	es: manufa	cturin	g and p	roper	ties, differer	nt types of
	refractorie	es.		0 1	1		
	Glass: Co	omposition,	types	of comme	rcial	glass, raw	materials and
	chemical	reactions, m	ethod	of manufa	cturi	ng, manufactu	are of special
	glass						
	Cement:	Portland cer	nent,	types and	man	ufacturing. C	ompounds in
	cements,	setting and	harde	ening of co	emen	t. Manufactu	ring of lime,
	gypsum,	-		-			-
	UNIT-II: P	igments, Dye	es and	Paints			
	Pigments	- Classificat	ion,	Manufactur	e an	d uses. man	ufacturing of
	lithopone,	titanium diox	ide, b	lack, blue,	yellov	w, red and gr	een pigments.
	Varnish, re	sins and lacq	uers.				
	Dyes - Cla	ssification, pr	repara	tion, dyeing	proc	esses.	
	Paints - Co	mposition, T	ypes, 1	Manufacture	e and	testing of Pair	nts.
	UNIT-III:	Fibers, Plastic	cs and	Rubber			
	Fibres -	lefinition-dif	ferenc	e between	Nat	ural and svn	thetic fibres-
	properties	of synthetic fi	ibres-	Artificial sil	k ray	on nylon and	l Tervlene
	Plastics -	composition		sification n	n, ruj naniif	acture proper	rties and uses
	recycling	f plastics	Ciust	fineación, n	lanai	deture, proper	ties and uses
	Dubbar tu	n plastics	n avnt	hatiamphhan	noti	rol mubbor V	Julconizations
	of Dubbor	pes of fuodel	d yoo	of multiples	- natt	ilai lubbel - v	vulcaliizatiolis
		Properties an			- 11 4	-	
	$\frac{\text{UNII-IV}}{\text{CL}}$	Chemical Exp	piosiv	es and Prop		.5	6 1 ·
	Chemical	Explosives	Inti	oduction,	Dev	elopment of	r explosives
	Classificati	on of explo	sives	Chemistry	of e	xplosives. Pro	opellants Gun
	propellants	, Rocket pro	opella	nts, Pyroteo	chnic	s, Sound pro	ducers, Light
	producers,	Heat proc	lucers	, Smoke	prod	lucers, Manu	ufacturing of
	Explosives	: TNT produ	ction,	Black pow	der p	production, RI	OX and HMX
	production	, tetryl, pic	eric a	acid, PETN	I, R	DX. Thermo	chemistry of

	Explosives, Oxygen balance, Heat of formation, Heat of explosion,
	Explosive power and power index, Safety and Environmental
	Considerations. Classification, Transportation, and Storage of Explosives.
	UNIT-V: Petroleum, Petrochemicals and Photography
	Introduction, constituents, Desalting and Dewatering Evaluation
	Distillation Cracking, Coking, Hydrocracking, and Reforming, Treating
	Processes. Fuels: energy resources, Refinery Gas, Water gas, Producer
	gas, Oil gas, natural gas, coal gas, Gobar gas and Liquefied Petroleum
	Gas. Gasoline. Solvents. Kerosene. Fuel Oil: Lubricating Oil Petroleum
	Wax Asphalt Coke Petrochemicals
	Photographic Industry
	Photographic process, process of black and white material, colour
	photography: materials and process. Manufacture of films and plates,
	special applications of photography
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is	be solved
a part of	(To be discussed during the Tutorial hours)
internal	
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Charkarabarthy B N, Industrial Chemistry,
Text	Oxford and IBH Publishing. Co. 1 st Edition.
	New Delhi, 2002.
	2. Sharma B K, <i>Industrial Chemistry</i> , Goel Publishing House, 1 st
	Edition, New Delhi,2011.
Reference	1 Othmer K Encyclonedia of Chemical Technology John Wiley and
Books	Song USA 1000
a i i	SUIS, USA, 1999.
Course Learning	g Outcomes (for Mapping with POs and PSOs)
Students will be a	ble:

CO1: To understand the Ceramics, Refractories and Cement.

CO2: To understand the nature of pigments and dyes.

CO3: To observe and record the processing of rubber and plastics.

CO4: To understand the properties of chemical explosives.

CO5: To interpret the experimental data scientifically to improve the quality of petrochemicals.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

SEMESTER – III

Title of the	PHYSIC	AL CHEM	ISTR	RY-II			
Course							
Paper No.	Core VII	[
Category	Core	Year	II	Credits	5	Course	23PCH7
		Semester	III			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	•
hours per week	6	-	-			6	
Prerequisites	Basic kno	wledge of p	hysic	cal chemis	try		
Objectives of the	To know	the importa	nce of	f surface p	heno	mena	
course	To under	stand the ess	sentia	l concepts	of el	ectrochemistry	· •
	To learn	the fundame	ntals	of quantu	m me	chanics	
	To apply	the quant	tum	mechanics	s to	hydrogen and	polyelectronic
	systems.	• .1		. 1	1	1 1	• /
Course Oralling	To famili	arize the syl	nmet	ry in mole	Cules	and predict the	e point groups.
Course Outline	UNIT-I:	Surface Pn	enom	iena and		lysis	anta at an ala an d
	Gibbs ad	sorption iso	interm	1 – SOII A- I face n	1quia	$\frac{1}{2}$ interfaces $-cc$	bomisorption
	Langmui	- solid-gas r BET isot	iiitei herm	race - p	ilysis	orption and c	on Kinetics of
	surface re	eactions inv	olvin	g adsorbed	d sne	cies – Langmu	ir-Hinshelwood
	mechanis	m. Freundli	ch an	d Langmi	ir ad	sorption isothe	erms, absorption
	of solven	ts from solu	tions	- applicat	ions.	Role of adsorr	otion in catalytic
	reaction -	- ion exchan	ge ad	lsorption –	- adso	orption chroma	tography
	Catalysis	: Classificat	ion –	- character	ristics	s of catalysis -	auto catalysis –
	enzyme c	atalysis -mi	chalis	s-menton e	equati	ion – acid base	catalysis.
	UNIT-II: Electrochemistry I						
	Electrode	- Electroly	e equ	uilibrium-	The	rmodynamic q	uantities from
	EMF data	a. Nernst eq	uatio	n- and its	limi	tations- equilib	rium electrode
	potentials	- classifica	tion	of electro	des	- concentration	n cells- liquid
	junction p	potentials.		D 1 T		1.0	5.1
	Electroly	tic conduct	tance	Debye-F	Hucke	el-Onsager the	eory – Debye
	Faikenna	gen and w	ien e	effectEl		de - electroly	Te equilibrium,
	rate of cl	potential –	er - c	cilitation surrent dei	cens. neitv	– Electokineti	c phenomena: -
	electro os	mosis-elect	ronho	preseis- s	edim	entation potent	ial - Theories of
	electrical	double lave	er-Ele	ectrical do	uble	laver potential	-zeta potential-
	theory of	multiple lay	vers a	t electrod	e elec	trolvte interfac	ce- double laver
	capacity-	Butler – V	olme	r Equation	1 – T	afel equation -	-, Applications:
	Fuel cells	and power	stora	ge.		1	× 11
	UNIT-II	I: Basic con	cepts	s of Quan	tum 1	nechanics	
	Classical	mechanics	_ #(General n	rincir	oles basic ass	umptions
	postulate	s of classica	ıl me	chanics. c	onser	vation laws. L	agrange's
	and Ham	ilton's equat	ions	of Motion	(no c	lerivation) [#] .	<u> </u>
	Wave pa	rticle dual	sm -	– uncerta	inty	principles –	functions-
	orthogon	ality and N	orma	lisation -	oper	ator - operato	r algebra.
	Linear an	d Hermitian	ı - eig	gen functi	on ar	d eigen values	. Angular
	momentu	m operator-	-com	mutation r	elatio	ons.	
	Postulate	s of quantu	ım n	nechanics	_ S	olving the Scl	hrodinger wave
	equation	(SWE) to si	mple	systems v	1z., p	article in a box	– one and three
	dimensio	nal, (1D and	1 3D ł	box)			

	UNIT-IV: Applications of Quantum Mechanics Setting and solving Schrodinger wave equation for harmonic oscillator, rigid-rotator, hydrogen and hydrogen like atoms (He ⁺ and Li^{2+}). Shapes of atomic orbitals - radial and angular probability distribution functions. Approximation methods – linear variation principle, application to hydrogen and helium atoms, perturbation method for non-degenerate systems, application of perturbation theory to helium atom. Pauli's principle and Slater determinants – variation method – application of perturbation theory to helium atom. Hertree – Forkself consistent field method. L – S and J – J coupling. Born – Openheimer approximation: Hydrogen molecule ion. LCAO method. MO and VB treatments of the hydrogen molecule. Hybridization and molecular orbitals of H ₂ O, NH ₃ and CH ₄ .Huckel
	pi-electron method for butadiene and benzene. UNIT-V: Concepts of Group Theory Elements of group theory – definition – group multiplication tables for C_2V and C_3V point groups – conjugate classes, conjugate and normal subgroups – symmetry elements and operations – point groups – assignment of point groups to molecules, - Matrix representation of geometric transformation and point groups – reducible and irreducible representations– Great Orthogonality Theorm -properties of irreducible representation – construction of character tables – C_2V , C_3V , C_2h .
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
Recommended Text	 R.K. Prasad, Quantum Chemistry, New Age International Publishers, New Delhi, 2010, 4th revised edition. F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003, 2nd edition. A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2nd Edition. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4th edition. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2nd edition. D. R. Crow, Principles and applications of electrochemistry, Athadition Chemiser & Unit/CDC 2014
Reference Books	1. N Levine, Quantum Chemistry, Allyn& Bacon Inc. 1983 4th

edition.
2. D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular
Approach, Viva Books
Pvt. Ltd, New Delhi, 2012.
3. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum
Mechanics of Chemical
Systems, Oxford & IBH Publishing Co., New Delhi, 1999.
4. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications,
Prentice Hall. Inc, 1980
5. J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London,
2011, Reprint.
6. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and
2B, Springer, Plenum Press, New York, 2008

Website and	1. https://nptel.ac.in/courses/104101124			
e-learning source	2. https://ipc.iisc.ac.in/~kls/teaching.html			
Course Learning C	outcomes (for Mapping with POs and PSOs)			
Students will be able	2:			
CO1: To discuss the	concepts of surface chemistry.			
CO2: To learn about the fundamentals of electrochemistry.				
CO3: To learn the basic concept of quantum mechanics.				
CO4: To apply the quantum theories to solve the problems.				

CO5: To develop skills in evaluating the group theory for the spectroscopic problem.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's	and	CO's
------------------------------------	-----	------

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Title of the	INORGA	NIC CHE	MIST	ΓRY – I			
Course							
Paper No.	Core VI	Ι	,			Γ	
Category	Core	Year	II	Credits	5	Course	23PCH8
	_	Semester	III			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	6	-	-			6	
Prerequisites	Basic kno	owledge of i	norga	inic chemi	stry .		
Objectives of the	To gain :	insights into	the	modern t	neori	es of bonding	in coordination
course	compoun	ds.	a tha	da ta dat		as the stability	v constants of
	10 lealli	various ii	letilo	us to det	emm	le the stability	y constants of
	To unde	rstand and	cons	truct corr	elatio	on diagrams a	nd predict the
	electronic	transitions	that a	are taking	place	in the complex	kes.
	To descr	ibe various	s sub	stitution	and	electron transf	er mechanistic
	pathways	of reactions	s in co	omplexes.			
	To evalua	ate the reaction	ions c	of octahed	al an	d square planar	r complexes.
Course Outline	UNIT-I:	Modern th	eorie	s of coord	linati	ion compound	s: Crystal field
	theory -	splitting of	d or	bitals in	octał	nedral, tetrahed	Iral and square
	planar sy	mmetries -	meas	urement o	of 10	Dq - factors af	ffecting 10Dq -
	spectroch	emical serie	es - c	rystal fiel	d stal	oilisation energ	y for high spin
	and low	spin compl	exes-	evidence	s for	crystal field	splitting - Jahn
	Teller dis	stortions and	d its o	consequen	ces.	Molecular Orbi	ital Theory and
	energy le	vel diagram	s con	cept of We	eak a	nd strong fields	
	UNIT-II	: Spectral	chara	acteristics	of c	complexes: Ter	rm states for d
	ions - cl	naracteristic	s of	d-d trans	ition	s - charge tra	nsfer spectra -
	selection	rules for e	electro	onic spect	ra -	Orgel correlat	ion diagrams -
	Sugano-T	Tanabe energ	gy lev	el diagran	ns - n	ephelauxetic se	eries.
	UNIT-III Stability	I: Stability	and	I Magnet	tic p	roperty of th	ne complexes:
	Thermod	vnamic asp	acs.	of complex	x for	mation Stenwi	ise and overall
	formation	constants	. Sta	bility con	rrelat	ions. statistica	I factors and
	chelate e	ffect. Deter	, minat	ion of sta	bility	constant and	composition of
	the com	plexes: Fo	rmati	on curve	s ar	nd Bjerrum's	half method,
	Potention	netric meth	od, S	pectropho	tome	tric method a	nd Continuous
	variation	method (Je	ob's	method)	Magr	netic property	of complexes:
	Spin-orbi	t coupling	, eff	ect of s	pin-o	rbit coupling	on magnetic
	moments	, quenching	of or	bital magn	etic 1	noments.	
	UNIT-IV	: Kinetics	and	mechanis	sms	of substitution	a reactions of
	complexe	ai anu so	yuare	e planar	LOD Anne e	SNCR machar	i allu Ladile
	for subst	itution read	tions	\therefore acid a	nd h	ase hydrolysis	of octahedral
	complexe	s; Classific	ation	of metal	ions	based on the	rate of water
	replacem	ent reaction	and	their corre	elatio	on to Crystal F	ield Activation
	Energy;	Substitution	read	ctions in	squa	re planar com	plexes: Trans
	effect, th	eories of t	rans	effect an	d ap	plications of t	trans effect in
	synthesis	of square pl	lanar	compound	ls.		
	UNIT-V	Electron T	ransf	er reaction	ns in	octahedral cor	nplexes: Outer

	sphere electron transfer reactions and Marcus-Hush theory; inner
	sphere electron transfer reactions: nature of the bridging ligand in inner
	sphere electron transfer reactions. Photo-redox, photo-substitution and
	photo-isomerisation reactions in complexes and their applications.
Extended	Questions related to the above topics from various competitive
Professional	examinations LIPSC / TRB / NET/ LIGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
nart of internal	(To be discussed during the Tutorial hours)
component only	(10 be discussed during the Tutorial nours)
Not to be included	
in the external	
in the external	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic
Text	Chemistry – Principles of structure and reactivity, 4th Edition,
	Pearson Education Inc., 2006
	2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition,
	Pearson Education Inc., 2008
	3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
	4. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,
	Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New
	York, 1988.
Reference Books	1 Kith F. Dene II and Labor C. Keter Laboration Chamilton Complete
	1. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders
	Publications, USA, 1977.
	2. Peter Atkins and Tina Overton, Shriver and Atkins Inorganic
	Chemistry, 5th Edition, Oxford University Press, 2010.
	3. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L.
	Guas, John Wiley, 2002, 3rd edn.
	4. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.
	5. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman
	and Co, London, 2010.
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-
e-learning source	fall-2008/pages/syllabus/

Students will be able:

CO1: Understand and comprehend various theories of coordination compounds.

CO2: Understand the spectroscopic and magnetic properties of coordination complexes.

CO3: Explain the stability of complexes and various experimental methods to determine the stability of complexes.

CO4: Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

CO5: Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	M	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of	Correlation	between	PSO's	and	CO's
	Correlation	Detteen	100 3	ana	

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	PHOTOCHEMISTRY AND PERICYCLIC REACTION						
Course							
Paper No.	Core IX						
Category	Core	Year	II	Credits	5	Course	23PCH9
		Semester	III			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	6	-	-			6	
Prerequisites	Basic kno	wledge of o	organi	ic chemist	ry		
Objectives of the	To und	erstand the	e ph	oto-physic	cal	processes and	experimental
course	technique	s in photocl	nemis	stry		L	1
	To study	the various	types	of photoc	hemi	cal reactions of	alkenes and
	aromatic	system					
	To under	stand the j	photo	chemistry	of s	singlet molecul	ar oxygen and
	polymers						
	To learn	the concepts	s of p	ericyclic r	eactio	on mechanisms.	
	study the	molecular of	orbita	l symmetr	y, mo	olecular orbital a	approaches
	To gain t	he knowled	ge of	photocher	nical	organic reaction	ns.
Course Outline	UNIT-I:	Chemistry	of Ph	notophysio	cal P	rocesses	
	Photo p	nysical pro	cesse	es in ele	ctron	ically excited	molecules –
	Radiation	less transit	ions -	-Jablonski	diag	ram - Internal c	conversion and
	intersyste	m crossing	g. Flu	uorescence	e en	nission – Fluo	prescence and
	structure.	Triplet stat	es an	d phospho	resce	ene emission – I	Photo physical
	kinetics	unimolecu	ılar	processes	s –	Stern-Volm	er equation.
	Photoche	mical techni	iques	-Experime	ental 1	techniques in ph	noto chemistry
	-Chemica	al actinome	try –	Ferrioxala	ate, u	iranyl oxalate,	photochromic,
	Reinecke	's saltactino	meter	res - Lase	rs and	d their application	ons.
		Photocher	nical	Reaction	I	NT 11/	T 1 / TT
	Photoche	mistry of c	arbon	iyl compo	unds	: Norrish type	I and type II
	reactions	Photoreal	uctior	1. Photoc	hemi	Stry of α , p	and β, γ –
	unsaturat	e cardonyi	com	pounds, P	noto	umerization, B	arton reaction
	Dhotoche	mistry of ar	omoti	i.	nder	Dhotochemical	isomerization
	addition	(1.2) addite	omati m 1	3 addition	n 1 2	1 addition) and	d substitution
	(Electron	(1,2) addited	cleon	bilic)	II I,-		a substitution
	Photoche	mistry of A	lkene	e Cis -Tr	ans I	somerization - l	Photochemistry
	of Conjug	pated Dienes	Rea	arrangeme	nt of	1.4 - and 1.5 - d	ienes
	UNIT-II	: Photoche	mica	l Reaction	n II	<u>1,1 und 1,5 u</u>	
	Photo ox	idation and	l Pho	to oxygei	natio	n. Singlet mole	ecular reaction.
	Photo ox	idation of a	alken	es.Photoch	nemio	cal Cyclization.	Di - π -methane
	rearrange	ment, Aza	di -	$-\pi$ meth	nane	rearrangement	, Photo- Fries
	Rearrang	ement, Hoff	mann	-Loefller-	Freyt	ag reaction	,
	Photoche	mistry of	poly	mers Ph	oton	olymerization	photochemical
	cross lir	iking of 1	nolvm	ners photo	odeor	radation of po	lymers (vinvl
	polvethvl	ene and nol	vpron	vlene) nh	otost	abilisers.	(vingi,
	UNIT-IV	: Pericveli	c Rea	iction: Co	ncert	ed Reaction – 1	MO Theory for
	bonding a	and anti bon	ding	orbitals –	Type	s od HOMO. L	UMO orbitals -
	Construct	ion of mole	ecular	orbitals.	sym	netry in π Mole	ecular Orbitals
	filling of	electrons ir	n mol	ecular orb	itals.	Frontier Molec	cular Orbitals –
	Molecula	r symmetri	ies o	of 1.3 bu	tadie	ne, 1,3,5 hex	atriene, allylic

	anatoms and partedianyl system connected and dispetatomy motions
	systems and pentadienyl system - contotatory and distotatory motions
	in ring opening reactions, conrotatory and disrotatory motions in ring
	closing reactions, Open chain conjugated system having $4n\pi$, $(4n+2)\pi$
	conjugated electrons, Frontier Molecular Orbital (FMO) Method,
	electrocyclic ring - closure and electrocyclic ring opening reactions.
	Correlation diagram for $4n\pi$ and $(4n+2)\pi$ system. Woodward -
	Hoffmann rule for thermal electrocyclic reaction
	UNIT V: Dariavalia Dopations II
	Cycloaddition reaction: $[2+2]$ and $[4+2]$ Cycloaddition reactions with
	FMO approach, Correlation diagram for cycloaddition reactions, The
	Woodward - Hoffmann rule for cycloaddition reactions, Huckel -
	Mobius method for cycloaddition reaction. Antarafacial and
	Suprafacial addition.
	Signatropic rearrangement: Mechanism of signatropic rearrangement.
	Signationic shift of alkyl groups. The Woodward - Hoffmann rule for
	signationic mamon company (where migrating group is hydrogen and
	signationic realizingement (where migrating group is hydrogen and
	not hydrogen). Huckel - Mobius method for sigmatropic
	rearrangement, [1, 3], [1, 5] and [3, 3] sigmatropic rearrangement,
	Cope rearrangement and Aza cope rearrangement. Fluxional
	Tautomerism.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE / TNPSC others
Component (is a	to be solved
port of internal	(To be discussed during the Tutorial hours)
part of internal	(10 be discussed during the Tutonal hours)
N to 1 i 1 i 1	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. K K Rohatgi Mukheriee, Fundamentals of photo chemistry.
Text	Wiley Eastern Ltd 1988
1010	2 N I Turro Molecular photochemistry New York W A Benjamin
	2.105 Turio, Molecular photochemistry, New Tork, W A Denjamin,
	1900. 2 G. Arran abalant, Incorrection about a boundation Kala Dablications
	3. S. Arunachalam, Inorganic photochemistry, Kala Publications
Reference Books	1. J. Clavden, N. Greeves, S. Warren and P. Wothers,
	Organic Chemistry, 1st Ed., OxfordUniversity Press
	2001
	2 M.D. Smith & I. March March's Advanced Organia
	2. M.D. Shiftin & J. March, March S Advanced Organic
	Chemistry, 5th Ed., John Wiley & Sons, New York,
	2001.
	3. F.A. Carey and R.A. Sundberg, Advanced Organic
	Chemistry, Part A and Part B, 5th Ed., Kluwer
	Academic/Plenum Publishers, New York, 2004
	4. P. G. M. Wuts, Greene's Protective Groups in Organic
	Synthesis, 5th Ed., Wiley, 2014
	5 Jagdamha Singh and Java Singh Photochemistry and Pariovelia
	Reactions New Age International Publishers New Delhi 2012

Website and	1. https://rushim.ru/books/praktikum/Monson.pdf					
e-learning source						
Course Learning Outcomes (for Mapping with POs and PSOs)						
Students will be able:						
CO1: To recall the basic principles of <i>photo-physical processes and experimental techniques</i>						
<i>in photochemistry</i>						
CO2: To understand the <i>photochemistry of alkenes and carbonyl compounds</i>						
CO3: To understand the <i>photochemistry of polymers</i>						
CO4: To predict the <i>molecular orbital symmetry, molecular orbital approaches</i>						
CO5: To design cyclo-addition and various photochemical rearrangements						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	PHYSICAL CHEMISTRY PRACTICAL - I						
Course							
Paper No.	Core X						
Category	CoreYearIICredits4Course23PCH10P						
		Semester	III			Code	

Instructional	Lecture	Tutorial	Lab Practice	Total						
hours per week	-	1	5 6							
Prerequisites	Basic knowledge of physical chemistry									
Objectives of the	To understand the molecular weight determination methods									
course	To evaluate the order of the reaction, temperature coefficient,									
	To understand the activation energy of the reaction									
	To learn comparison of acids by kinetic studies									
Course Outline	Non Electrical									
	1. I 5 2. I 3. C	Determination of molecular weight of given unknown substance by Rast Method(Determination of K_f value of given solvent) Determination of molecular weight by transition temperature method. (Determination of K_f value of given substance) CST of phenole water system. Effect of impurities on CST								
	4. I c 5. i	 Correction of phenor water system "Effect of imparties on Corr." Determination of eutectic temperature and eutectic composition of a primary mixture of compound A & B (phase diagram of compound formation) i. Determination of partition or distribution coefficient of iodine between CCl4 and water. ii. Determination of equilibrium constant of the reaction between Kl and I₂ and to find outthe concentration of the given KI solution. Comparison of strength of acid by kinetics of hydrolysis of ester. 								
	i t 6. (
	7. I f 8. I 9. I s (10. I	Determination Factor (A) for Effect of ion salt effect (I solution) Determination Adsorption Determination Determination Determination	etermination of energy of activation (E_a) and Arrhenius ctor (A) for the acid catalysedhydrolysis of ester. fect of ionic strength on kinetics of reaction – primary lt effect (Determination of concentration of the given KNO ₃ lution) etermination of concentration of the given oxalic acid by idying the adsorption of oxalic acid on charcoal dsorption Isotherm) etermination of solubility and heat of solution of the given alic acid.							
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)									
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional									
from this course	Competency, Professional Communication and Transferable skills.									
Recommended	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,									
Text	Viva Books, New Delhi, 2009.									
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.									
------------------------	--	--	--	--	--	--	--	--	--	--
	Viswanathan Co. Pvt., 1996.									
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,									
	New Age International (P) Ltd., New Delhi, 2008.									
	I. E.G. Lewers, Computational Chemistry: Introduction to the Theory									
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,									
	Springer, New York, 2011.									
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel									
	Publishing House, 2001.									
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in									
	Physical Chemistry, 8th edition, McGraw Hill, 2009.									
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.									
	Chand and Co., 1987.									
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,									
	Narosa Publishing House Pvt, Ltd., New Delhi, 2014.									
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-									
	Blackwell.									
Website and	https://web.iitd.ac.in/~nkurur/2015-									
e-learning source	16/Isem/cmp511/lab_handout_new.pdf									
Course Learning (Dutcomes (for Mapping with POs and PSOs)									
Students will be abl	e:									
CO1: To recall the p	principles associated with various physical chemistry experiments.									
CO2: To scientifica	lly plan and perform all the experiments.									
CO3: To observe an	CO3: To observe and record systematically the readings in all the experiments.									
CO4: To calculate a	nd process the experimentally measured values and compare with									
graphical data.										
CO5: To interpret t	he experimental data scientifically to improve students' efficiency for									
societal development	nts.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	POLYME	R CHEMIST	FRY				
Course	-						
Paper No.	Elective V						
Category	Elective	Year	II	Credits	3	Course	23PCHE5A
8.		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	3	-	-			3	
Prerequisites	Basic know	ledge of gene	eral ch	emistry		1	
Objectives of	To learn th	e basic conce	pts an	d bonding in	n pol	ymers.	
the course	To explain	various types	of po	lymerizatio	n rea	ctions and kine	etics.
	To underst	and the impo	ortance	e of industr	ial p	olymers and the	heir synthetic
	uses.						-
	To determi	ne the molecu	ılar w	eight of poly	ymer	s.	
	To predict	the degradation	on of j	polymers an	nd con	nductivities.	
Course Outline	UNIT-I: C	Characterizat	t ion, 1	Molecular	weig	ht and its De	etermination:
	Primary a	nd secondary	y bor	nd forces	in p	olymers; coh	esive energy,
	molecular	structure, ch	nemica	al tests, th	erma	l methods, T	fg, molecular
	distributior	ı, stability. I	Detern	nination of	Mo	lecular mass	of polymers:
	Number A	verage mole	cular	mass (M _n)	and	Weight avera	ige molecular
	mass (M _w)	of polymers.	Mole	cular weigh	t dete	ermination of I	high polymers
	by physical	and methods	5.		D - 1		
		Mechanism	and	kinetics of	Poly	merization: (Chain growth
	polymeriza	unon: Cationi	ic, an	tto polymo	radi	cal polymeniz	lation, Stereo
	growth pol	ymerization	Degra	a of polyme	rizati	on Keachon	killetics. Step
			of D	lymorizati	on o	nd Polymor	Dogradation:
	Bulk Solu	tion Emulsi	on Si	uspension	solid	interfacial a	nd gas phase
	polymeriza	tion, Emuision tion Types	of Po	olvmer Dec	rada	tion Thermal	degradation
	mechanical	degradation.	photo	degradation	Pho	oto stabilizers	Solid and gas
	phase poly	merization.	photo	acgradation	,	, statilizers,	Solid and gus
	UNIT-IV:	Industrial P	olym	ers: Prepara	ation	of fibre form	ing polymers,
	elastomeric	material.	Ther	noplastics:	Pol	yethylene, P	olypropylene,
	polystyrene	e, Polyacrylo	onitrile	e, Poly Vi	nyl	Chloride, Pol	ly tetrafluoro
	ethylene,	nylon and	pol	yester. Th	ermo	osetting Plas	tics: Phenol
	formaldehy	de and exp	oxide	resin. El	astor	ners: Natural	rubber and
	synthetic ru	ubber - Buna	- N, E	Buna-S and	neop	rene. Conduct	ing Polymers:
	Elementary	ideas; exam	ples:	poly sulph	ur ni	triles, poly ph	enylene, poly
	pyrrole a	nd poly ad	cetyle	ne. Polym	ethyl	lmethacrylate,	polyimides,
	polyamides	s, polyuretha	nes, p	olyureas, p	oolye	thylene and p	polypropylene
	glycols.			. ~			
	UNIT-V:	Polymer P	rocess	sing: Com	poun	ding: Polyme	er Additives:
	Fillers, Pla	sticizers, anti	ioxida	nts, therma	1 stal	bilizers, fire re	etardants and
	colourants.	Processing 1	echni	ques: Calen		ig, die casting	, compression
	moulding,	injection mo	Juldin	g, DIOW II Ecomina	iould	ing and reini	orcing. Film
	Dolumoriza	tion optolygic	ing,	roanning.	Cat	arysis and	catarysts –
	auto-exhem	non catalysis	vana	iysi support dium boto	, ciay	eous catalysi	s and active
	centres	si calalysis,	vana	inum, nete	ogel	icous catalysi	is and active
Extended	Ouestions 1	elated to the	above	topics. fror	n var	ious competiti	ve

Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE / TNPSC others to						
Component (is	be solved						
a part of	(To be discussed during the Tutorial hours)						
internal							
component							
only, Not to be							
included in the							
external							
examination							
question paper)							
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional						
from this course	Competency, Professional Communication and Transferable skills.						
Recommended	3. V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.						
Text	4. G.S. Misra, Introductory Polymer Chemistry, New Age International						
	(Pvt) Limited, 1996.						
	5. M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand &						
	Company, New Delhi, 2004.						
Reference	1. F. N. Billmeyer, Textbook of Polymer Science, Wiley Interscience,						
Books	1971.						
	2. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and						
	Engineering, Tata McGraw-Hill, 1978.						
Course Learning	Course Learning Outcomes (for Mapping with POs and PSOs)						

Students will be able:

CO1: To understand the bonding in polymers.

CO2: To scientifically plan and perform the various polymerization reactions.

CO3: To observe and record the processing of polymers.

CO4: To calculate the molecular weight by physical and chemical methods.

CO5: To interpret the experimental data scientifically to improve the quality of synthetic polymers.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	BIOMOL	ECULES A	ND I	HETERO	CYC	LIC COMPO	UNDS			
Course										
Paper No.	Elective V									
Category	Elective	Year	II	Credits	3	Course	23PCHE5B			
		Semester	III			Code				
Instructional	Lecture	Tutorial	Lab) Practice		Total				
hours per week	3	-	-			3				
Prerequisites	Basic know	vledge of ch	emis	try						
Objectives of	To learn the	he basic con	ncept	s and biol	logica	al importance of	of biomolecules			
the course	and natura	l products.								
	To explain	various of	funct	ions of ca	rbohy	drates, proteins	s, nucleic acids,			
	steroids and hormones.									
	To underst	and the func	ctions	of alkalo	ds an	d terpenoids.	1 / 1			
	To elucida	ate the stru	cture	determin	ation	of biomolecul	les and natural			
	To avtract	and constr	unt tl	a atmiati	ro of	now alkalaida	and termanoida			
	from differ	and consultant		lie structur		new arkalolus	and terpenoids			
Course Outline		Chemistry	ond	metaboli	sm o	f carbobydrat	tes. Definition			
Course Outline	classificati	on and bi	anu Mogi	ral role	of ca	arbohydrates	onosaccharides			
	Linear and	ring structu	ires (Haworth f	ormu	la) of ribose, g	lucose fructose			
	and mann	ose (struct	ure	determina	tion	not required).	physical and			
	chemical	properties	of g	lucose a	nd fr	ructose. Disac	charides: Ring			
	structures	(Haworth	form	ula) –oc	currei	nce, physical	and chemical			
	properties	of maltose	, lac	tose and	sucr	ose. Polysacch	arides: Starch,			
	glycogen	and cellul	ose -	- structu	re ar	nd properties,	glycolysis of			
	carbohydra	ates.								
	UNIT-II:	Steroids a	nd H	[ormones:	Ster	oids-Introduction	on occurrence.			
	nomenclati	ure. config	urati	on of s	substi	tuents. Diels'	hvdrocarbon.			
	stereochem	nistry, classi	, ficatio	on, Diels'	hydro	ocarbon, biologi	ical importance,			
	colour rea	ctions of st	erols	, choleste	rol-oc	ccurrence, tests	, physiological			
	activity,	biosynthesis	of	choleste	erol	from squalen	e. Hormones-			
	Introductio	n, classifica	ation,	functions	s of s	sex hormones-	androgens and			
	estrogens,	adrenocorti	cal h	ormones-c	cortise	one and cortise	ol structure and			
	functions of	of non-steroi	dal h	ormones-a	drena	line and thyrox	in.			
	UNIT-III:	Proteins a	nd r	nucleic ac	ids: S	Separation and	purification of			
	proteins –	dialysis, g	gel fi	ltration a	nd el	lectrophoresis.	Catabolism of			
	amino a	cids -	trans	amination,	, 02	xidative dear	mination and			
	decarboxy	lation. Biosy	Inthe	sis of prot	teins:	Role of nuclei	c acids. Amino			
	acid metab	olism and	ureac	ycle. Stru	cture,	methods for t	he synthesis of			
	nucleoside	s - direct o	comb	ination, fo	ormat	ion of heteroc	yclic base and			
	nucleoside	modificati	on,	conversio	n of	nucleoside (to nucleotides.			
	Primary a	nd seconda	ry st	tructure o	t RN	A and DNA ,	Watson-Crick			
	model, sol	a phase syn	thesis	s ofoligon	ucleo	tides.				
	UNIT-IV:	Proteins a	nd n	nucleic ac	ids: S	Separation and	purification of			
	proteins -	dialysis, g	gel fi	iltration a	nd el	lectrophoresis.	Catabolism of			
	amino a	cids -	trans	amination,	, 02	xidative dear	mination and			
	decarboxy	lation. Biosy	ynthe	sis of prot	teins:	Role of nuclei	c acids. Amino			
	acid metab	olism and	ureac	ycle. Stru	cture,	methods for t	he synthesis of			

	nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson-Crick model, solid phase synthesis ofoligonucleotides.
	UNIT-V: Fused Ring Heterocyclic Compounds: Benzofused five membered rings: Indole, isoindole, benzofuran and benzothiophene, Preparation and properties. Benzofused six membered rings: Quinoline and isoquinoline: Preparation by ring closure reactions, Reactions: Mechanism of electrophilic and nucleophilic substitutions, oxidation and reduction reactions.
Extended Professional Component (is a part of internal	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Not to be included in the external examination question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	T. K Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry,
Text	Wiley VCH, North America,2007.
	 I. L. Finar, Organic Chemistry Vol-2, 5th edition, Pearson Education Asia, 1975. V. K. Ahluwalia and M. Goyal, Textbook of Heterocyclic compounds, Narosa Publishing, New Delhi,2000. M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Co., Jalandhar, Delhi, 2014. V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New Delhi,2009.
Reference	I L Finar Organic Chemistry Vol-1 6 th edition Pearson Education
Books	Asia.2004.
	Pelletier, Chemistry of Alkaloids, Van Nostrand
	Reinhold Co,2000.
	Shoppe, Chemistry of the steroids, Butterworthes, 1994.
	I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal &
	M P Singh and H Panda Medicinal Herbs with their formulations
	Daya Publishing House, Delhi,2005.
Website and	ps://www.organic-chemistry.org/
e-learning	ps://www.studyorgo.com/summary.php
source	ps://www.clutchprep.com/organic-chemistry
Course Learning	Outcomes (for Mapping with POs and PSOs)
Students will be at	ble:
CO1: To understar	nd the basic concepts of biomolecules and natural products.

CO2: To integrate and assess the different methods of preparation of structurally different biomolecules and natural products.

CO3: To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.

CO4: To analyse and rationalise the structure and synthesis of heterocyclic compounds.

CO5: To develop the structure of biologically important heterocyclic compounds by different methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	SUPRAMOLECULAR CHEMISTRY						
Course							
Paper No.	SEC II						
Category	SEC	Year	II	Credits	2	Course	23PCHSE2
		Semester	III			Code	
Instructional	Lecture	Lab Practic	e			Total	
hours per week	3	-				3	
Prerequisites	Basic know	vledge of gene	eral ch	nemistry		•	
Objectives of	To learn th	e hasic concer	ats of	supramoleo	ular (hemistry	
the course	To learn th	e host-quest c	hemis	supramotec	mole	cules	
	To underst	and the crysta	l engi	neering		eures.	
	To study al	bout the desig	ns and	d various int	eract	ions in supram	olecules.
	To learn th	e molecular e	lectro	nic devices		I	
Course Outline	UNIT-I: B	asic Concept	s of S	upra Moleo	cular	Chemistry	
	Basic con	cents Termi	nolog	v and nor	nencl	ature in sun	ramolecular
	chemistry	definition	of	supramolec	ular	chemistry	Selectivity
	Compleme	ntarity, Co-or	berativ	vity and the	chela	ate effect, Prec	organisation.
	Binding	constants,	Kine	tic and	ther	modynamic	selectivity,
	Supramole	cular interacti	ons				
	Chemical i	interactions le	eading	g to supram	olecu	ular assemblie	s, nature of
	binding in	teractions in	supra	molecular :	struc	tures: ion-ion,	ion-dipole,
	dipole-dipo	ole, H-bondi	ng, c	ation- π , an	110n-7	τ, π-π, Van	der Waals
	interactions	s and Hydroph	nobic	effects.			
	UNIT-II: S	Synthesis and	l Diff	erent Struct	tures	1	
	Host-Guest	t chemistry: I	Macro	cyclic vers	us ac	yclic hosts, H	ligh-dilution
	synthesis a	and Template	e syn	thesis. Synt	thesis	and structur	e of crown
	ethers, lar	lat ethers, p	odand	ls, cryptanc	1S, S]	pherands, hen	nispherands,
	cyclophane	eranus and		rcerands an	d her	nicarcerands	ciodexums,
	Biological	ligands ion c	les, ca hanne	els and sider	nhore	es Anion bind	ing charged
	receptors.	neutral rece	ptors.	metal cor	ntaini	ng receptors.	lewis acid
	receptors, c	litopic recepto	ors ar	nd zwitterio	n rec	eptors.	
	UNIT-III:	Crystal engi	neerii	ng		•	
	Crystal e	ngineering:	Cond	cepts in	crys	tal engineeri	ng, Crystal
	engineering	g with hydr	ogen	bonds, π i	intera	iction and ot	her common
	synthon, s	olid state re	activi	ty and eng	ineer	ing crystals.	Coordination
	polymers, cocrystals, polymorphs and their physic - chemical properties, coordination polymers, Interpenetrating networks, metal organic frameworks and their properties						
	organic frameworks and men properties.						
	UNIT-IV:	Designs and	Vario	ous Interact	tions		
	Self - Ass	embly Self -	assei	nbly of mo	olecul	les: Definition	s and basic
	synthesis	and propertie	idly,	the molecul	ny W Nes	Biological co	on, Design,
	Ladders n	and propertie	s UI helice	and molect	nes. adder	s and oride b	elicates and
	molecular i	olygons met	allom	acrocycles	cater	anes, rotaxane	encates and es. rotaxanes
	and catenar	nes as molecu	ılar de	evices.			,

	UNIT-V: Molecular devices
	Molecular devices: Molecular Electronic Devices – Controlling
	Electricity Using Supermolecules, Reading Signals from Molecular
	Device, Molecular Photonic Devices – Controlling Light with
	Supermolecules, Molecular Computers, Molecular Machines, Molecular
	Devices with Directional Functionality, molecular wires, molecular
	rectifiers, molecular switches, molecular logic.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is	be solved
a part of	(To be discussed during the Tutorial hours)
internal	
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. J.M. Lehn, Supramolecular Chemistry-Concepts and
Text	Perspectives, Wiley-VCH, 1995.
	2. P. D. Beer, P. A. Gale and D. K. Smith, Supramolecular
	Chemistry, Oxford University Press, 1999.
	5. J. W. Steed and J. L. Atwood, Supramolecular Chemistry, 1st
	Lu., Wiley, 2000. 1 I.W. Steed Core Concepts in Supremalecular Chemistry
	and Nanochemistry 1st Ed. John Wiley & Sons, 2007
	and Wanoenennistry, 1st Ed., John Whey & Sons, 2007.
Reference	
Books	1. J.D. Seader, I. W. Hamley, Introduction to soft mater Synthetic
200112	and Biological selfassemblymaterials, Separation process
	principles, 2nd Ed., Wiley, 2010.
	2. G. R. Desiraju, J. J. Vittal and A. Ramanan, Crystal
	Engineering: A Textbook, WorldScientific, 2011
Course Learning	Q Outcomes (for Manning with POs and PSOs)
	, outcomes (for mapping with 1 05 and 1 505)
Students will be a	ble:
CO1: To understa	ind the Fundamentals of supramolecular chemistry.
CO2: To understa	and the nature of host-guest relationship.
CO3: To observe	and record the processing of crystal engineering.

CO4: To understand the properties non covalent interactions. CO5: To illustrate the application of supramolecules in electronics and other fields

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	INTERNS	INTERNSHIP/ INDUSTRIAL ACTIVITY								
Course										
Paper No.	Industrial	Industrial activity								
Category	IA/Int	Year	II	Credits	2	Course	23PIT			
		Semester	III			Code				
Instructional	Lecture	ure Lab Practice Total								
hours per week		- 30 Hours								
Prerequisites	Basic know	Basic knowledge of general chemistry								

\

SEMESTER – IV

Title of the	INORGA	NIC CHE	MIST	FRY – II			
Course							
Paper No.	Core XI						
Category	Core	Year	Π	Credits	5	Course	23PCH11
9,		Semester	IV		-	Code	
Instructional	Lecture	Tutorial	Lah	Practice		Total	
hours per week	6	-	-	/ I luctice		6	
Prerequisites	Basic kno	wledge of i	norga	nic chemi	strv	0	
Objectives of the	To reco	mize the f	funda	mental co	oncer	ts and structu	ral aspects of
course	organom	etallic comr	ound	s	леер	ts and structu	indi dispectis of
course	To learn	reactions of	of or	ganometal	lic c	ompounds and	their catalytic
	behaviou	r	012	Sunoniotai		ompounds und	then cutury the
	To identi	fy or predie	ct the	structure	of c	oordination co	mpounds using
	spectrosc	opic tools.		Structure	01 0		inpounds using
	To under	stand the str	uctur	e and bond	ting i	n coordination	complexes
	To evaluate	ate the spect	ral ch	aracterist	ics of	selected comp	exes.
Course Outline	UNIT-I:	Basic	conc	ents of	01	rganometallic	compounds:
	Classifica	tion of liga	nds -	18 electro	on ru	le and its limita	ations: Bonding
	and struc	ture: Metal	carb	onvl (MC) app	roach). Metal	nitrosvl. Metal
	dinitroge	n olefin co	mple	xes (exan	nle:	Ziese's salt). 1	metal-acetylene
	and met	al-allvl co	mple	xes: Met	al-cv	clopentadienvl	complexes –
	Examples	(Ferrocen	e) an	d MO at	oproa	ch to bonding	in Ferrocene:
	fluxional	isomerism.	•) ••••	a nio u	-prom		
	UNIT-II	Reactions	and	catalysi	s of	organometalli	c compounds:
	Reactions	s of organoi	netall	lic compo	unds:	Oxidative add	ition reductive
	eliminatio	on $(\alpha \text{ and } $	3 elir	ninations)	. mis	pratory insertio	n reaction and
	coordinat	ed ligand r	eactio	n. Organo	, met	allic catalysis:	Hydrogenation
	of olefin	s (Wilkinso	on's o	catalyst).	hvdro	oformvlation o	of olefins (oxo
	process),	oxidation o	of ole	efin (Wacl	ker p	rocess), Acetic	acid synthesis
	(Monson	o process) -	- Zieg	gler-Natta	polyr	nerization.	Ĵ
	UNIT-II	I: IR and R	amai	n Spectros	scopy	7	
	Introduct	ion – group	vibr	ational co	ncep	t - effect of co	oordination on
	ligand vi	brations -	uses	of group	o vib	orations in in	the structural
	elucidatio	on of metal	comp	lexes of u	rea, t	hiourea, cyanid	e, thiocyanate,
	nitrate, s	sulphate, a	nd d	imethyl :	sulph	oxide - effec	t of isotopic
	substituti	on on the	vibra	tional spe	ectra	of molecules	- vibrational
	Spectra	of metal c	arboi	nyls - Čo	ombir	ned uses of IF	R and Raman
	spectrosc	opy in the st	tructu	ral elucida	ation	of simple mole	cules
	UNIT-IV	: ESR Spe	ctros	copy: Intr	roduc	tion: g value –	isotrophy and
	anisotrop	hy – hyperf	ine s	plitting (e	xamp	(bles) - g and A	A parameters -
	factors a	affecting g	valu	ie – zero	o fie	ld splittind a	nd Krammers
	degenera	cy - ESR sp	ectra	of V(II), N	Mn(II), Fe(II), Co(II)	, Ni(II), Cu(II)
	complexe	s					
	Mossbau	er spectros	copy	:			
	Mossbau	er effect,	Reco	oil energy	y, D	oppler shift,	Isomer shift,
	quadrupo	le splitting	g and	d magnet	ic in	nteractions. A	pplications of
	Mössbau	er spectra to	Fe co	ompounds	•		
	UNIT-V:	NQR Spec	trosc	copy:			
	Character	ristics of qu	ladruj	olar nucl	eus -	- effect of field	d gradient and

	magnetic field upon quadrupolar energy levels – NQR transitions –
	applications of NQR spectroscopy
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1 I F Halterer FA Keiter DI Keiter and OK Malli Increasion
Text	1. J E Huneey, EA Keller, KL Keller and OK Medm, morganic
	Chemistry – Principles of structure and reactivity, 4th Edition,
	Pearson Education Inc., 2006
	2. G L Meissler and D Alarr, Inorganic Chemistry, 3rd Edition,
	Pearson Education Inc., 2008
	3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
	4. B D Gupta and A K Elias, Basic Organometallic Chemistry:
	Concepts, Syntheses and Applications, University Press, 2013.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,
	Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New
	York, 1988.
Reference Books	1 Crahtree Robert H The Organometallic Chemistry of the Transition
	Metals 3rd ed New York NV: John Wiley 2000
	2 D Gütlich E Bill A X Trautwein Mossbauer Spectroscopy and
	2. F Outlien, E Din, A A Hautwein, Mossbauer Spectroscopy and Transition Matal Chamistry: Fundamentals and Applications 1 st
	adition Springer Verleg Perlin Heidelberg 2011
	Concerts and Models of Inorgania Chemistry, D. Dougles, D.
	5. Concepts and Models of morganic Chemistry, B. Douglas, D. MaDarial, L. Alavandar, Jahr Wilay, 1004, 2rd adr
	McDaniel, J. Alexander, John Wiley, 1994, 5rd edn.
	4. K. F. Purcell, J. C. Kolz, inorganic Chemistry; Saunders:
	Philadelphia, 1976.
	5. K. S. Drago, Physical Methods in Chemistry; Saunders:
	Philadelphia, 1977.

Website and	https://archive.nptel.ac.in/courses/104/101/104101100/
e-learning source	

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds CO2: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	PHYSICAL CHEMISTRY PRACTICAL - II						
Course							
Paper No.	Core XII						
Category	Core	Year	II	Credits	5	Course	23PCH12P
		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week		1	5			6	
Prerequisites	Basic kno	wledge of p	hysic	cal chemis	try	•	
Objectives of the	To unde	rstand the	prine	ciple of	cond	uctivity experi	ments through
course	conducto	metric titrat	ions.				_
	To evalu	ate the ord	ler of	f the reac	tion,	temperature c	coefficient, and
	activation	energy of	f the	reaction	by	following pseu	ido first order
	kinetics.						
	—				c		
	To const	ruct the ph	ase c	liagram of	t two	o component s	system forming
	congruen	imening	sona	and Im	a 10	s eulectic ten	iperatures and
	To detern	iolis. aina tha kin	atics	of adsorpti	ono	f ovalic acid on	charcoal
	To deve	lon the not	entia	l energy	diaor	am of hydrog	en ion charge
	density d	istribution a	ind M	axwell's s	sneed	l distribution by	v computational
	calculatio	n.			spece		, computational
Course Outline	UNIT-I:	<u>Conductivi</u>	tv Ex	periment	s		
	1 Deter	mination of	equix	valent cond	~ lucta	nce of a strong	electrolyte &
	the v	erification of	of DH	O equatio	n.	nee of a strong	
	2. Verif	ication of C	Stwal	d's Diluti	on La	aw & Determin	ation of pKa of
	a we	ak acid.					1
	3. Verif	ication of K	Cohlra	usch's La	w for	weak electroly	rtes.
	4. Deter	mination of	fsolu	bility of a	spari	ngly soluble sal	lt.
	5. Acid	-base titratio	on (sti	rong acid a	and w	veak acid vs Na	OH).
	6. Preci	pitation titra	ations	(mixture	of ha	lides only).	
		T 7 1 / 1					
	UNIT-II	Kinetics					
	1. Study	the kinetic	s of	acid hydi	rolys	is of an ester,	determine the
	temp	erature coe	efficie	ent and a	ISO 1	the activation	energy of the
	2 Study	1011. tha kinatia	e of	the reactiv	on h	atwaan acatona	and indina in
	2. Study	c medium	s UI by ha	lf_life me	thod	and determine	the order with
	respe	e meandine	and a	acetone	uiou	and determine	the order with
	respy		una				
	UNIT-II	I: Phase dia	igran	1			
	Construct	tion of phase	e diag	gram for a	simp	le binary syster	n
	1. Naphth	alene-phena	anthre	ene	•	- •	
	2. Benzop	phenone- di	pheny	amine			
	Adsorpti	on					
	Adsorptio	on of oxalic	acid	on charco	al &	determination	of surface area
	(Freundli	ch isotherm	only).			
Extended	Questions	s related to t	he ab	ove topics	, froi	m various comp	oetitive
Professional	examinat	ions UPSC	/ TRE	<u> / NET/ U</u>	GC-	CSIR / GATE /	TNPSC others

Commence de la commen	4 h
Component (1s a	
part of internal	(10 be discussed during the Tutorial nours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
Text	Viva Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,
	New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,
	Springer, New York, 2011.
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
	4 Shailendra K Sinha Physical Chemistry: A laboratory Manual
	Narosa Publishing House Pyt. Ltd. New Delhi. 2014
	5 F Jensen Introduction to Computational Chemistry 3 rd Ed Wiley-
	Blackwell
Website and	https://web.iitd.ac.in/~nkurur/2015-
e-learning source	16/Isem/cmp511/lab_handout_new.pdf
Course Learning O	utcomes (for Manning with POs and PSOs)
Students will be able	a.
CO1 To recall the r	rinciples associated with various physical chemistry experiments
CO2: To scientifical	ly plan and perform all the experiments
CO3: To observe an	d record systematically the readings in all the experiments
CO4: To calculate a	nd process the experimentally measured values and compare with
oranhical data	The process the experimentary measured values and compare with
CO5 To interpret the	he experimental data scientifically to improve students' efficiency for
societal development	te

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	PROJEC	ROJECT WITH VIVA-VOCE								
Course										
Paper No.	Project									
Category	Project	Year	II	Credits	7	Course	23PCHPW			
		Semester	IV			Code				
Instructional	Lecture	Tutorial	Lak) Practice		Total				
hours per week						10				
Prerequisites	Basic kno	wledge of p	hysi	cal chemis	try					

Title of the NUCLEAR AND RADIATION CHEMISTRY	NUCLEAR AND RADIATION CHEMISTRY								
Course									
Paper No. Elective VI									
Category Elective Year II Credits 3 Course 23I	3PCHE6A								
Semester IV Code									
Instructional Lecture Tutorial Lab Practice Total									
hours per week 4 4									
Prerequisites Basic knowledge of general chemistry									
Objectives of To learn the basic concepts nuclear chemistry.									
the course To explain various types of radioactive decay.									
To understand the types of radio analytical techniques.									
To predict the radioactive pollution.									
Course Outline UNIT-I: Nuclear Chemistry									
Introduction, Q value and reaction threshold, reaction cross secti	ction, cross								
section and reaction rate, neutron capture cross section- var	ariation of								
neutron capture cross section with energy (1/V law). Interact	ction with								
matter and detection of gamma rays with matter by photo	otoelectric,								
Compton and pai production, interaction of beta particles, neut	utrons and								
heavy charged particles, radioactive decay and equilibrium, therm	rmonuclear								
reactions, photonuclear reactions, Radiometric utration, isotopic	one dilution								
counter Ionization chamber counter	cintination								
UNIT-II: Radioactive decay									
Various modes of decay natural radioactivity successive ra	radioactive								
decay and growth kinetics radioactive equilibrium half life ha	half life of								
mixed radioisotopes, decay schemes, its determination by expe	perimental								
methods, statistical nature of nuclear radiation.	permentai								
Nuclear structure: Mass-energy relationship, nuclear binding ener	ergy, semi-								
empirical mass formula, nuclear stability rules, nuclear properti	rties, mass								
size, spin and parity, nature of nuclear forces, liquid drop mod	odel, shell								
model, its evidence and advantages, comparison of the two	o models,								
Energetics of nuclear reaction, cross reaction, comparison with	h chemical								
reactions, various types of nuclear reactions, photonuclear, spalla	llation and								
thermonuclear reaction									
UNIT-III: Nuclear fission and Fusion									
Probability, mass and charge distribution, release of energy and	d neutrons,								
spontaneous fission, nuclear reactors and their uses for power pro-	production,								
brief idea about thermal and fast breeder reactors, reprocessing o	of nuclear								
fuel. Heavy water- manufacturing and use in reactors. accelerators	ors, nuclear								
fusion. Production of isotopes by nuclear reactions, production	on of new								
elements, radioactive waste management and disposal.	Curium								
Berkelium Einsteinium Mondelevium Nebelium Leuroneium	, Curium,								
LINIT-IV: Padioanalytical techniques									
Neutron sources Neutron activation analysis principle methods	dology and								
application for trace analysis Isotope dilution analysis_princ	nciple and								
application Isotonic exchange reaction mechanism and applicati	ation in use								
of radioisotopes and tracers radioactive dating based on carbo	on-14 and								
lead isotopes.									

	UNIT-V: Radiolysis and Radioactive Pollution
	Introduction to radiation chemistry, sources of radioactive pollution,
	effects of radioactive pollution, nuclear disasters in the two decades,
	protection from radiation, control of radiation.
	Radiation chemistry of water and aqueous solutions. Measurement of
	radiation doses. Relevance of radiation chemistry in biology, organic
	compounds and radiation polymerization. Measurement of dose. Dosimetric
	terms and units, inter conversions, calculation of absorbed dose-various types of
	dosimeters, chemical dosimeters (Fricke, Ceric sulphate and FBX), experimental.
	Radiolysis-definition, process, Radiolysis of water and aqueous solutions,
	hydrated electron, Effect of radiation on biological substances, genetic effects,
Extanded	radiation effects on organic compounds.
Drofossional	Questions related to the above topics, from various competitive examinations LIDSC / TDD / NET/ LICC CSID / CATE / TNDSC others to
Component (is	examinations UPSC / TKB / NET/ UGC-CSIK / GATE / INFSC others to he solved
a part of	(To be discussed during the Tutorial hours)
internal	(10 be discussed during the Tutonal hours)
component	
only. Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	C.N.Rao. Nuclear Chemistry.
Text	B. G. Harvey, Introduction to Nuclear Physics and Chemistry, Prentice
	Hall, Inc. (1969)
	H.J. Arnikar, Essentials of Nuclear Chemistry, 4th Edition (1995), Wiely-
	Eastern Ltd., New Delhi.
Reference	1. D. D. Sood, A. V. R. Reddy, Fundamentals of Radiochemistry, Indian
Books	Association of Nuclear Chemists and Allied Scientists, 2007.
Course Learning	g Outcomes (for Mapping with POs and PSOs)
Course Learning	g Outcomes (for Mapping with POs and PSOs)
C4	1.1

Students will be able:

CO1: To understand the basics of nuclear chemistry.

CO2: To scientifically recognize the nuclear decay reactions.

CO3: To observe and record the processing of nuclear fusion and fission reactions.

CO4: To illustrate the radio analytical methods.

CO5: To observe the radiolysis process.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	CHEMIST	TRY OF NAT	TURA	L PRODU	CTS						
Course											
Paper No.	Elective V	I									
Category	Elective	Year	II	Credits	3	Course	23PCHE6B				
		Semester	IV			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per	4	-	-			4					
week											
Prerequisites	Basic know	ledge of gene	eral ch	emistry							
Objectives of	To learn th	e basic conce	pts an	d biological	imp	ortance of bior	nolecules and				
the course	natural pro	ducts.	-	_	_						
	To explain	various of fu	inctio	ns of carbol	hydra	ates, proteins,	nucleic acids,				
	steroids and	d hormones.									
	To understa	and the function	ons of	alkaloids a	nd te	rpenoids.					
	To elucida	te the struct	ure d	eterminatio	n of	biomolecules	and natural				
	products.										
	To extract and construct the structure of new alkaloids and terpenoids										
	from different methods.										
Outline	 UNIT-I: Alkaloids: Introduction, occurrence, classification, isolation and functions of alkaloids. Classification, general methods of structural elucidation. Chemical methods of structure determination of Coniine, Piperine, Nicotine, Papaverine. Atropine, Quinine, Belladine, Cocaine, Heptaphylline, Papaverine and Morphine. UNIT-II: Terpenoids: Introduction, occurrence, Isoprene rule, 										
	determinati	on of Camph	or ΔP	ous of ue	⊂adir	ining structur	Zingiberine				
	Carotenoi	ds. Introducti		eometrical	isom	erism Structu	re functions				
	and synthes	sis of B-carote	ene an	d vitamin-A			are, runetions				
	UNIT-III:	Anthocyanir	ies ar	d flavones	: An	thocvanines: In	ntroduction to				
	anthocyani	nes. Structu	re a	nd genera	l n	nethods of	synthesis of				
	anthocyani	nes. Cyanidin	e chlo	oride: struct	ure a	nd determination	ion. Flavones:				
	Biological	importance of	f flavo	ones. Struct	ure a	nd determinati	ion of flavone				
	and flavono	oids. Querceti	n: Str	ucture deter	mina	tion and impor	rtance.				
	UNIT-IV:	Purines and	Ster	oids: Purin	es: I	ntroduction, o	ccurrence and				
	isolation o	f purines. Cl	lassifi	cation and	spec	ctral properties	s of steroids.				
	biological	importance, S	tructu	ire and synt	thesis	s of Uric acid	and Caffeine.				
	Steroids: S	steroids-Introc	luctio	n, occurren	ce, 1	nomenclature,	configuration				
	of substitue	ents, Diels' h	ydroca	arbon, stere	oche	mistry, classifi	ication, Diels'				
	hydrocarbo	on, biologica	ul in	portance,	colo	our reactions	of sterols,				
	cholesterol	-occurrence,	tests,	physiolog	gical	activity, bio	osynthesis of				
	cholesterol	cholesterol from squalene.									

	UNIT-V: Natural Dyes: Occurrence, classification, isolation,
	purification, properties, colour and constitution. Structural determination
Extanded	and synthesis of indigotun and anzarin.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / IKB / NET/ UGC-CSIK / GATE / INPSC others to
Component (1s a	
part of internal	(10 be discussed during the Tutorial nours)
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
Pagement and	Competency, Professional Communication and Transferable skills.
Tout	1. G. K. Chalwal, Organic Chemistry on Natural Products, Vol. 1, Himeleye Dublishing House, Mumbei 2000
Text	Allialaya Publishing House, Mullibal, 2009.
	2. G. K. Chatwai, Organic Chemistry on Natural Products, vol. 2, Himeleve Dublishing House, Mumbei 2000
	A A garwal Chamistry of Organia Natural Products Vol. 1
	Goel Publishing House Meerut 1997
	4 O P Agarwal Chemistry of Organic Natural Products Vol 2
	Goel Publishing House, Meerut 1997
	5 J. J. Finer, Organic Chamistry Vol 2, 5th adition, Paerson
	Fducation Asia 1975
Reference	1 I I Finar Organic Chemistry Vol-1 6 th edition Pearson
Rooks	Education Asia 2004
DUUKS	2 Pelletier Chemistry of Alkaloids Van Nostrand
	Reinhold Co 2000
	3 Shoppe Chemistry of the steroids Butterworthes 1994
	4. I. A. Khan, and A. Khanum, Role of Biotechnology in medicinal &
	aromatic plants. Vol 1 and Vol 10. Ukkaz Publications.
	Hyderabad,2004.
Website and	https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic
source	

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand the biological importance of chemistry of natural products.

CO2: To scientifically plan and perform the isolation and characterization of synthesized natural products.

CO3: To elucidate the structure of alkaloids, terpenoids, carotenoids, falvanoids and anthocyanins.

CO4: To determine the structure of phytochemical constituents by chemical and physical methods.

CO5: To interpret the experimental data scientifically to improve biological activity of active components.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	M	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation Detween 1 SO S and	ind C	O's and	etween PSO's and (ł	Correlation	Level of	I
---	-------	---------	---------------------------	---	-------------	----------	---

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	ANALYTICAL CHEMISTRY										
Course											
Paper No.	SEC III										
Category	SEC	Year	II	Credits	2	Course	23PCHSE3				
		Semester	IV			Code					
Instructional	Lecture	Lab Practic	e			Total	<u>.</u>				
hours per week	4	- 4									
Prerequisites	Basic know	Basic knowledge of general chemistry									
Objectives of	To learn the extraction techniques.										
the course	To understand the TLC and paper chromatography										
	To study al	oout the liquid	d and	gas chromat	ograp	ohy					
	To learn th	e Thermograv	vimeti	ric analysis							
	To discuss	the types of e	electro	analytical to	echni	ques					
	UNIT-I: E	xtraction Te	chniq	ues:							
	Principle a	nd technique	s. Dis	stribution ra	ntio a	nd distributio	n coefficient.				
	Factors at	fecting extra	action	efficiency	: Io	n association	ı complexes,				
	chelation,	synergistic e	extrac	tion, pH.	Nume	ericals based	on multiple				
	extractions	. Role of cl	nelatir	ng ligands,	crow	vn ethers, cal	ixarenes and				
	cryptands	in solvent ex	tracti	on. Introdu	ction	to Solid pha	use extraction				
	(SPE) and	Microwave as	ssisted	extraction	(MAI	E), Application	ns.				
	Ion excha	nge:Principle	and	technique.	Туре	es of ion exc	hangers. Ion				
	exchange of	equilibria. Ior	1 excl	hange capac	eity.	Effect of com	plexing ions.				
	Zeolites as	10n-exchange	ers. Ap	plications.		()					
	UNII-II:	shromotogra	c and	TI C): Drin	oma	ograpny	solution of				
	inin-layer chromatography (ILC): Principle, methodology selection of										
	identificati	on and detect	tion i	measuremer	or pro	RE values O	ualitative and				
	quantitativ	application	\mathbf{P}_{1}	aner chron	n or natog	ranhy (PC).	Theory and				
	principle:	echniques: of	ne tw	vo-dimensio	nal a	nd circular PC	[¬] mechanism				
	of separati	on structure	of c	ellulose and	tvn	es of paper.	methodology.				
	sample preparation, choice of solvents, location of spots and measurement										
	of RF value, factors affecting RF values, advantages and applications										
	UNIT-III: Liquid and Gas Chromatography										
	HPLC Col	umns - Type	es, Pa	cking Char	acteri	stics and Mo	dern Column				
	Trends of HPLC Columns - Specialty Columns (Chiral and Bio-										
	Separation). Stationary	Phas	es (Normal	and	Reverse-phase	se) - Mobile				
	Phases (Se	election of N	Iobile	Phase, Iso	ocrati	c and Gradie	nt Elution) -				
	Sample Pr	eparation and	d Inti	roduction-	HPLO	C Method De	evelopment –				
	Preparative	HPLC - T	roubl	leshooting -	– Qu	antitative and	d Qualitative				
	Application	ns – Hyphena	ted Sy	stems (LC/	MS).						
	Gas Chron	atography	~								
	Instrument	ation - Carrie	er Gas	= Packed	and C	Capillary Colu	mn, Types of				
	Stationary	Phases and C	olum	n Selection)	. Inje	ction Methods	(On-column,				
	Split/Split-	less and Pro	gram	med Tempe	eratur	e vaporizer)	I emperature				
	Control -	Common de	etecto	r systems.	Sam	pling Method	us - Sample				
	Selection Troublash	x rreparation	ii anc	i injection	G	Application	evelopment -				
	Systems (C	C/MS)	inatiV(e and Qualit	auve	Applications -	– nypnenated				
	Systems (C	Thormoonely	tical	Tachniques							
	$\frac{\text{UNII-IV}}{\text{Types}} = \text{T}$	ermooravime	etric A	nalveis (TO	A) -	Factors influe	encing TGA -				

	Instrumentation of TGA - Applications of TGA for analysis of inorganic
	compounds and polymers. Differential thermal analysis (DTA) – Theory -
	instrumentation and applications in food and pharmaceutical industry.
	Differential Scanning Calorimetry (DSC) – Theory – instrumentation and
	applications in polymer and pharmaceutical industries.
	UNIT V: Electroanalytical Techniques
	Modes of Transport of electro active species - Diffusion, migration and
	hydrodynamic modes. Role of supporting electrolytes. Polarography-
	principle and applications. Principle of square wave polarography. Cyclic
	voltammetry- anodic and cathodic stripping voltammetry and differential
	pulse voltammetry. Sodium and lithium-ion batteries and redox flow
	batteries. Mechanism of charge storage: conversion and alloying.
	Capacitors- mechanism of energy storage, charging at constant current and
	constant voltage. Energy production systems: Fuel Cells:
	classification, alkaline fuel cells, phosphoric acid fuel cells, high
	temperature fuel cells.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is	be solved
a part of	(To be discussed during the Tutorial hours)
internal	
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	Advanced Analytical Chemistry: Meites and Thomas
Text	(McGraw-Hill)
	Analytical Chemistry by Open Learning (Wiley)
	Analytical Chemistry: Gary D. Christian (Wiley, India)
Reference	Basic Concepts in Analytical Chemistry: S. M. Khopkar (New Age
Books	International Publication)
	Fundamentals of Analytical Chemistry: S. A. Skoog and D. W. West
Course Learning	g Outcomes (for Mapping with POs and PSOs)
Students will be a	ble:
CO1. To understo	and the nature of extraction techniques

CO1: To understand the nature of extraction techniques.

CO2: To record the processing of TLC and paper chromatography.

CO3: To understand the liquid and gas chromatography.

CO4: To interpret the experimental data of thermo analytical techniques.

CO5: To understand the different types of electro analytical techniques

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	Μ
CO 2	M	S	S	S	S	М	S	S	S	S
CO 3	S	S	M	S	S	S	S	М	S	S
CO 4	Μ	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

Title of the	EXTENSION ACTIVITY							
Course								
Paper No.	Extension activity							
Category	EA	Year	Π	Credits	1	Course	23PEA	
		Semester	IV			Code		
Instructional	Lecture	Tutorial	Lab) Practice		Total		
hours per week								
Prerequisites	Basic knowledge of chemistry and its applications							