DEPARTMENT OF PHYSICS H.H. THE RAJAH'S COLLEGE(AUTO) PUDUKKOTTAI – 622 001

COURSE STRUCTURE AND SYLLABI FOR PG PROGRAMME

CHOICE BASED CREDIT SYSTEM (2023 – 2024 ONWARDS)

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System M.Sc. Physics Programme 2023-2024 Onwards

			Hrs/		Exam			
Sem	Paper	Sub Code	week	Credit	hrs.	Marks		
				Internal	External	Total		
	I - SEMESTER							
1.1	CC 1- Mathematical Physics	23PPH1	7	5	3	25	75	100
	CC 2-Classical Mechanics							
1.2	and Relativity	23PPH2	7	5	3	25	75	100
	CC 3-General Physics							
1.3	Laboratory	23РРН3Р	6	4	3	40	60	100
	Elective 1-Linear and Digital							
1.4	ICs and Applications	23PPHEIA	5	3	3	25	75	100
	Elective 2-Crystal Growth							
1.5	and Thin films	23PPHE2A	5	3	3	25	75	100
	II - SEMESTER							
2.1	CC 4- Statistical Mechanics	23PPH4	6	5	3	25	75	100
2.2	CC 5-Quantum Mechanics –I	23PPH5	6	5	3	25	75	100
2.3	CC 6-Electronics Laboratory 23PPH6P 6 4 4		40	60	100			
	Elective 3-Advanced							
2.4	Mathematical Physics	23РРНЕЗА	4	3	3	25	75	100
	Elective 4-Microprocessor							
2.5	and Microcontroller	23PPHE4B	4	3	3	25	75	100
	Skill Enhancement Course 1-							
	Physics for Skill							
2.6	Enhancement -I	23PPHSE1	4	2	3	25	75	100
	III - SEMESTER							
	CC 7-Quantum Mechanics –							
3.1	П	23PPH7	6	5	3	25	75	100
	CC 8- Atomic Physics and							
3.2	Molecular Spectroscopy	23РРН8	6	5	3	25	75	100
	CC 9-Electromagnetic							
3.3	Theory	23РРН9	6	5	3	25	75	100
	CC 10-Micro Processor,							
	Micro Controller & Python							
3.4	Programming Laboratory	23PPH10P	6	4	4	40	60	100
	Elective 5-Physics of							
	Nanoscience and							
3.5	Nanotechnology	23PPHE5A	3	3	3	25	75	100
	Elective 5-Numerical							
	Methods & python							
	Programming	23PPHE5B						
	Skill Enhancement Course							
3.6	II-Physics for Competitive	23PPHSE2	3	2	3	25	75	100

	Examinations							
	Internship/Industrial Visit							
3.7	(30 Hours)	23PIT		2				
	IV - SEMESTER							
	CC 11- Nuclear and Particle							
4.1	Physics	23PPH11	6	5	3	25	75	100
	CC 12- Condensed Matter							
4.2	Physics	23PPH12	6	5	3	25	75	100
4.3	CC 13-Project with viva-voce	23PPH3PW	10	7		20	80	100
4.4	Elective 6- Energy Physics	23PPHE6A	4	3	3	25	75	100
	Elective 6- Medical Physics	23PPHE6B						
	Skill Enhancement Course							
	III-Electronics and							
4.5	Communication Systems	23PPHSE3	4	2	3	25	75	100
4.6	Extension Activity	22PEA		1				
				91				2200
		Total Cred	lit: 91					

Consolidation:

Part	Subject	Credits Distribution	Total
A	Core	12x4	48
A	Core Practical	4x3	12
Α	Elective	4x3	12
B1	Skill Enhancement Course(SEC)	4x2	08
B2	Soft Skill& Internship	5x2	10
С	Extension Activity	1x1	01
	TOTAL		91

M.Sc. PHYSICS

Preamble:

The curriculum for the P.G. Physics for universities and colleges is revised as per Learning Outcomesbased Curriculum Framework (LOCF). The learner centric courses are designed to enable the students to progressively develop a good understanding of the concepts of various domains in physics. Significant modification is the inclusion of the courses to equip students to face challenges in industries and make them employable. Skill development in different spheres and confidence building are given a special focus.

TANSCHE R	EGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM
	FRAMEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc., Physics
Programme Code	
Duration	PG – 2YEARS
	PO1: Problem Solving Skill
	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to all
	organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
Programme Outcomes (POs)	PO5: Individual and Team Leadership Skill
	Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability skills in the
	competitive environment.
	PO/: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and
	a global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.

	PSO1 – Placement
	To prepare the students who will demonstrate respectful engagement with others'
Programme	ideas, behaviors, beliefs and apply diverse frames of reference to decisions and
Specific	actions.
Outcomes	PSO 2 - Entrepreneur
(PSOs)	To create effective entrepreneurs by enhancing their critical thinking, problem
	solving, decision making and leadership skill that will facilitate startups and high
	potential organizations.

PSO3 – Research and Development
Design and implement HR systems and practices grounded in research that
comply with employment laws, leading the organization towards growth and
development.
PSO4 – Contribution to Business World
To produce employable, ethical and innovative professionals to sustain in the
dynamic business world.
PSO 5 – Contribution to the Society
To contribute to the development of the society by collaborating with stakeholders
for mutual benefit.
PSO 6 Students will utilize e-resources, digital tools and techniques for widening
their knowledge base.
PSO 7 Students gain exposure to programming language and skills.
PSO 8 Student will appreciate the interplay of mathematics, physics and
technology.
PSO 9 Students will develop adequate knowledge and skills for employment and
entrepreneurship.
PSO 10 An awareness of civic and ecological duties as good citizens and
importance of human values will be inculcated in students

	METHODS OF EVALUATION				
Internal	Continuous Internal Assessment Test				
Evaluation	Assignments / Snap Test / Quiz	25 Marks			
	Seminars				
	Attendance and Class Participation				
External	End Semester Examination75 Marks				
Evaluation					
	Total	100 Marks			
	METHODS OF ASSESSMENT				
Remembering	• The lowest level of questions require students to reca	ll information			
(K1)	from the course content.				
	• Knowledge questions usually require students	to identify			
	information in the text book.				
Understanding	• Understanding off acts and ideas by comprehendin	g organizing,			
(K2)	comparing, translating, interpolating and interpreting	in their own			
	words.				
	• The questions go beyond simple recal land requir	e students to			
	combined at a together				
Application	• Students have to solve problems by using/applying	ng a concept			
(K3)	learned in the classroom.				
	• Students must use their knowledge to determine a exact response.				
Analyze (K4)	• Analyzing the question is one that asks the stude	ents to break			
	down some thing into its component parts.				
	 Analyzing requires students to identify reasons caus 	es or motives			
	and reach conclusions or generalizations.				
Evaluate (K5)	• Evaluation requires an individual to make judgment	on something.			
	• Questions to be asked to judge the value of an idea	, a character,a			
	work of art, or a solution to a problem.				
	• Students are engaged in decision-making and problem	n–solving.			

	• Evaluation questions do not have single right answers.
Create (K6)	 The questions of this category challenge students to get engaged in creative and original thinking. Developing original ideas and problem solving skills.

ELECTIVE PAPERS

LIST 1

- 1. Crystal Growth and Thin films
- 2. Physics of Nano Science and Technology
- **3.** Communication Electronics
- 4. Energy Physics

LIST 2

- **1.** Advanced Mathematical Physics
- 2. Advanced Optics
- 3. Plasma Physics
- 4. Bio Physics

LIST 3

INDUSTRY ORIENTED ELECTIVE (IOE)

- 1. Microprocessor 8086 and Microcontroller 8051
- 2. Medical Physics
- 3. Characterization of Materials
- 4. Digital Communication

(Note: Institutions can also frame such IOE courses more suitable for their locality.)

	Core -1 - MATHEMATICAL PHYSICS	I YEAR - FIRST SEMESTER
--	--------------------------------	-------------------------

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH1	MATHEMATICAL PHYSICS	Core				5	7	75

Pre-Requisites

Knowledge of Matrices, vectors, differentiation, integration, fourier and laplace transform, differential equations, complex analysis and special function.

Learning Objectives

- To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program
- > To extend their manipulative skills to apply mathematical techniques in their fields
- > To help students apply Mathematics in solving problems of Physics
- To study the connection between differential equations and their contribution in the study of dynamics.
- > To enhance the physically relevant problem solving techniques skills using special function

UNITS	Course Details
	The Scalar and Vector fields - Integration of Vector - Line integrals, Surface
UNITI:	integrals and Volume integrals - Gauss Divergence theorem - Stokes theorem -
VECTOR	Green's theorem.
ANALYSIS AND	Basic concepts – Definitions- examples of vector space – Linear dependence
LINEAR	and independence - Scalar product- Orthogonality – Schwartz inequality- Gram-
VECTOR SPACE	Schmidt orthogonalization process –Linear operators - Orthogonal basis – Change of
	basis – Isomorphism of vector space - Projection operator.
	Eurotions of a Complex Variable Differentiability Analytic functions. Line
	integrale complex Function Complex Integration Contour Integration Cauchy
UNITH:	Riemann conditions Poles and Singular points Couchy's Integration, Cauchy –
	integral Formula Taylor's Series Leurent's Series Zeros and poles Cauchy's
COMPLEX	Desidue the gram and its Auglication Fushering of integrals using residues. Fushering
ANALYSIS	of Definite integral and contour integrals
	of Definite integral and contour integrals.
	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix -
UNITIII:	Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -Trace of
	a matrix- Transformation of matrices - Characteristic equation - Eigen values and
MATRICES	Eigen vectors - Cayley–Hamilton theorem –Diagonalization.
	Definitions -Fourier transform and its inverse - Transform of Gaussian function and
UNITIV:	Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms -
	Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite
FOURIER	and in a semi - infinite medium - Wave equation: Vibration of an infinite string and
TRANSFORMS	of a semi - infinite string.
∝ LAPLACE	Laplace transform and its inverse - Transforms of derivatives and integrals –

TRANSFORMS	Differentiation and integration of transforms - Dirac delta functions - Application -
	Laplace equation: Potential problem in a semi - infinite strip.

	Definition of Gamma and Beta functions - Fundamental property, Transformation,							
	Different form of Beta function and Relation between the Beta, Gamma function -							
UNITV:	Legendre differential equations - Associated Legendre polynomials - Bessel and							
	Hermite differential equations and polynomials -Generating function - Orthogonality							
SPECIAL	properties - Recurrence relations - Generating function – Rodrigue's formula -							
FUNCTIONS	Dirac delta function.							
τινητ γι.	Expert Lectures Online Seminars Webinars on Industrial Interactions/Visits							
PROFESSIONAL	Competitive Examinations Employable and Communication Skill Enhancement							
COMPONENTS	Social Accountability and Patriotism							
	1 DK Chattana dhavay 2012 Mathamatical Dhuring (2 nd adition) New Aca							
	1. P.K. Chattopadnyay, 2013, <i>Mathematical Physics</i> (2 ⁻⁴ edition), New Age, New Dolhi							
	New Dellin 2 A.W. Joshi 2017 Matrices and Tensors in Physics 4th Edition (Paperback)							
	2. A w Joshi, 2017, Matrices and Tensors in Thysics, 4th Edition (Γαρειδάεκ), New Δge International Pvt I td. India							
	3 B D Gupta 2010 Mathematical Physics (5 th edition)							
	VikasPublishing House New Delhi							
TEXT BOOKS	4. H. K. Dass and Dr. Rama Verma. 2014. Mathematical Physics. Seventh							
	Revised Edition. S. Chand & Company Pyt. Ltd., New Delhi.							
	5. Sathyaprakash, Mathematical Physics, Sultan Chand & Sons, New Delhi, 6th							
	edition. 2012.							
	1. E. Kreyszig, Advanced Engineering Mathematics (Wiley Itel. Student							
	Version, 10th edition, 2015).							
	2. V. Balakrishnan, Mathematical Physics with Applications, Problems and							
	Solutions							
REFERENCE	(Ane Books Pvt. Ltd. 1st edition, 2018).							
BOOKS	3. D. G. Zill, Advanced Engineering Mathematics (Jones & Bartlett, 6th							
	edition, 2017).							
	4. M. T. Vaughn, Introduction to Mathematical Physics (Wiley India, 1st							
	edition, 2013).							
	 www.knanacademy.org https://woutu.be/LZnPIOA1_2L 							
	 nitps://youtu.de/LZnRIOA1_21 http://hymerphysics.nby.astr.gsu.adu/hbasa/hmat.html#hmath 							
WEB SOURCES	5. http://nyperpnysics.pny-asu.gsu.edu/nbase/innat.nuin#innatin 4. https://www.youtube.com/watch?y=_2;ymyM7OUUL&list=DLbb;T_DVTELL							
	\rightarrow Intps://www.youtube.com/watch: $v=_2$ jymuwi/OUU&list=PLikH_KH_KHEU 27vS_SIED56gNiVIGO2ga7							
	5 https://archive.nptel.ac.in/courses/115/106/115106086/							
	5. https://atchive.hpiei.ac.hi/courses/115/100/115100000/							

At the end of the course the students will be able to:

CO1 Understand use of bra-ket vector notation and explain the meaning of complete K1, K2

	orthonormal set of basis vectors, and transformations and be able to apply them.	
CO2	Able to understand analytic functions, do complex integration, by applying Cauchy	
	Integral Formula. Able to compute many real integrals and infinite sums via complex	K2, K3
	integration.	
CO3	Analyze characteristics of matrices and its different types, and the process of	K 1
	diagonalization.	174
CO4	Solve equations using Laplace transform and analyze the Fourier transformations of	
	different function, grasp how these transformations can speed up analysis and correlate	K4, K5
	their importance in technology	
CO5	To find the solutions for physical problems using linear differential equations and to	
	solve boundary value problems using Green's function. Apply special functions in	K2, K5
	computation of solutions to real world problems	
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Map course outcomes (**CO**) for each course with program outcomes (**PO**) and program specific outcomes (**PSO**) in the 3-point scale of STRONG(3),MEDIUM(2) and LOW (1).

23PPH1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

23PPH1	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Core -2 - CLASSICAL MECHANICS AND	I YEAR - FIRST SEMESTER
RELATIVITY	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH2	CLASSICAL MECHANICS AND RELATIVITY	Core				5	7	75

Pre-Requisites

Knowledge of fundamentals of mechanics, Foundation in mathematical methods.

Learning Objectives

- > To understand fundamentals of classical mechanics.
- > To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

UNITS	Course Details
	Mechanics of a single particle - mechanics of a system of
UNIT I:	particles – conservation laws for a system of particles –
PRINCIPLES OF	constraints – holonomic & non-holonomic constraints –
CLASSICAL MECHANICS	generalized coordinates - configuration space - transformation
	equations – principle of virtual work.
LINIT II.	D'Alembert's principle - Principle of least action -Derivation of
	Lagrange's equation from it - Lagrangian equations of motion
	for conservative and Dissipative system – applications: (i)
FORMULATION	simple pendulum (ii) Atwood's machine (iii) projectile motion.
	Phase space - cyclic coordinates - conjugate momentum -
UNIT III:	Hamiltonian function - Hamilton's canonical equations of
HAMILTONIAN	motion – applications: (i) simple pendulum (ii) one dimensional
FORMULATION	simple harmonic oscillator (iii) motion of particle in a central
	force field.
	Formulation of the problem – transformation to normal
UNIT IV:	coordinates - frequencies of free vibrations and normal modes -
SMALL OSCILLATIONS	Free vibrations of a linear triatomic molecule- Damped driven
	pendulum.
	Inertial and non-inertial frames - Lorentz transformation
	equations - length contraction and time dilation - relativistic
UNIT V:	addition of velocities - Einstein's mass-energy relation -
RELATIVITY	Minkowski's space – four vectors – position, velocity,
	momentum, acceleration and force in for vector notation and
	their transformations.

TINITE VI.	Expert Lectures, Online Seminars - Webinars on Industrial				
	Interactions/Visits, Competitive Examinations, Employable and				
PROFESSIONAL	Communication Skill Enhancement, Social Accountability and				
COMPONENTS	Patriotism				

	1. N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw Hill 2001
	2. H. Goldstein, C. Poole and J. Sofko, Classical Mechanics
	(Pearson Education, New Delhi, 2013).
TEXT BOOKS	3. N.C.Rana and P.S.Joag, Classical Mechanics, (Tata Mc-Graw
	Hill, New Delhi, 2001).
	4 G. K. Sharma, Classical Mechanics, (Pragati Prakashan, New
	Delhi, 2012)
	5 S. T.Thornton and J. B. Marion, Classical Dynamics of Particles
	and Systems.(Cengage Learning, 2003)
	1. Classical Mechanics – J. C. Upadhyaya, Himalaya Publishing
	House, 2012.
	2. G. K. Sharma, Classical Mechanics, (Pragati Prakashan, New
	Delhi, 2012)
REFERENCE BOOKS	3. T. L. Chow, Classical Mechanics (John Wiley, New York, 1995)
	4. S. N. Biswas, 1999, Classical Mechanics, Books & Allied,
	Kolkata.
	5. Gupta and Kumar, Classical Mechanics, KedarNath.
	6. T.W.B. Kibble, Classical Mechanics, ELBS.
	1. http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldstein
	_Classical_Mechanics_optimized.pdf
	2. https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-
WEB SOURCES	editionpdf-pdf-free.html
	3. https://nptel.ac.in/courses/122/106/122106027/
	4. https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-
	fall-2014/lecture-notes/
	5. https://www.britannica.com/science/relativistic-mechanics

At the end of the course the student will be able to:

CO1	Understand the fundamentals of classical mechanics.						
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	К3					
CO3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	K3, K5					

CO4	Analyze the small oscillations in systems and determine their normal modes of	KA K5		
	oscillations.	IX7, IX 3		
CO5	Understand and apply the principles of relativistic kinematics to the mechanical	K 2 K3		
	systems.	N 2, N 3		
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate				

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPH2	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

23PPH2	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Core 3 – GENERAL PHYSICS LABORATORY	I YEAR - FIRST SEMESTER

Subject	Subject Name	gory	L	Т	Р	dits	Iours	rks
Code		Categ				Cree	Inst. F	Maı

23РРН3Р	GENERAL PHYSICS LABORATORY	Core		4	6	100

Pre-Requisites
Knowledge and hands on experience of basic general experiments of Physics
Learning Objectives
> To understand the concept of mechanical behavior of materials and calculation of same using
appropriate equations.

- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.
- > To give hands on training to do advanced physics experiments.
- To make the students understand the concepts behind various physical experiments such as polarizablity of liquids refractive index of glass.

Course Details

(Any Twelve Experiments from the list)

- 1. Determination of Young's modulus and Poisson's ratio,Rigidity modulus by Hyperbolic fringes Cornu's Method.
- 2 Determination of Young's modulus and Poisson's ratio, Rigidity modulus by Elliptic fringes -Cornu's Method.
- 3 Identification of Prominent lines by spectrum photograph- Iron Spectrum.
- 4 Identification of Prominent lines by spectrum photograph- Copper Spectrum.
- 5 Determination of Specific charge of an electron e/m Thomson's method.
- 6 Measurement of Conductivity Four probe method.
- 7 Determination of polarization of liquid (benzene) using spectrometer.
- 8 Determination of Stefan's constant of radiation from a hot body
- 9. Measurement of Susceptibility of liquid Quincke's method.
- 10. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility.
- 11. Determination of Planck constant by Photo electric effect.
- 12. Determination of Charge of an electron by spectrometer.
- 13. Compressibility of a Liquid using Ultrasonic interferometer.
- 14. Determination of Specific rotatory power of a liquid using Polarimeter.
- 15. Determination of Magnetic susceptibility of a thin rod by Guoy method.
- 16. He-Ne Laser experiments (particle size, diameter of thin wire determination).
- 17. Determination of wavelength and thickness of a film using Michelson interferometer
- 18 .Determination of Magnetic susceptibility of a liquid by Guoy method.
- 19. Determination of Magnetic susceptibility of a powder Guoy method.
- 20. Determination of Rydberg constant using spectrometer.

	1. Kit Developed for doing experiments in Physics- Instruction
TEXT BOOKS	manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences.
	2. General Physics Laboratory Manual, Department of Physics,

	ST.Joesph College, Trichy. (2000)
	3. Practical Physics and Electronics, C.C. Ouseph, U.J. Rao,
	V.Vijayendran, S.Viswanathan Publishers (2007).
	4. A text book of Practical Physics, M.N.Srinivasan,
	S.Balasubramanian, R.Ranganathan, sultan Chand&Sons (2017).
	5. D.Malacara (ed.), Methods of Experimental Physics, Series of
	volume, Acadamic Press Inc. (1988)
	6. An advanced course in Practical Physics, D. Chattopadhayay,
	C.RRakshit, New Central Book Agency Pvt. Ltd
	1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.
	2. An advanced course in Practical Physics, D.Chattopadhayay, C.R
REFERENCE BOOKS	Rakshit, New Central Book Agency Pvt. Ltd
	3. A course on experiment with He-Ne Laser, R.S. Sirohi, John
	Wiley & Sons (Asia) Pvt. Ltd.
	4. Practical Physics, Gupta and Kumar, Pragati Prakasan

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus.	K2
CO2	Acquire knowledge of thermal behaviour of the matetials.	K1
CO3	Understand theoretical principles of magnetism through the experiments.	K2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5
CO6	Conduct experiments on applications of FET and UJT	K4
CO7	Analyze various parameters related to operational amplifiers.	K4
CO8	Understand the concepts involved in arithmatic and logical circuits using IC's	K2
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K1
CO10	Analyze the applications of counters and registers	K4
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPH3P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3

CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

23PPH3P	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

Continuous Internal Assessment	End Semester Examination	Total	Grade
40	60	100	

Elective 1 - L APPLICATI	I YEAR	- FI	RST	Γ SE	MEST	ΓER		
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks

23PPHE1A	LINEAR AND DIGITAL ICs AND APPLICATIONS	Elective		3	5	75

Pre-Requisites

Knowledge of semiconductor devices, basic concepts of digital and analog electronics

Learning Objectives

> To introduce the basic building blocks of linear integrated circuits.

- > To teach the linear and non-linear applications of operational amplifiers.
- > To introduce the theory and applications of PLL.
- > To introduce the concepts of waveform generation and introduce one special function ICs.
- > Exposure to digital IC's.

UNITS	Course Details
UNIT I: INTEGRATED	Introduction, Classification of IC's, basic information of Op-Amp 741 and
CIRCUITS AND	its features - The ideal Operational amplifier - Op-Amp internal circuit and
OPERATIONAL AMPLIFIER	Op-Amp.Characteristics
UNIT II: APPLICATIONS OF OP-AMP	LINEAR APPLICATIONS OF OP-AMP: Solving simultaneous equations - Solving differential equations - V to I and I to V converters NON-LINEAR APPLICATIONS OF OP-AMP: Log and Antilog amplifier - Multiplier and Divider – Comparators - Schmitt trigger - Triangular and Square waveform generators.
UNIT III: ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters - band pass - band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer- Description of functional diagram of Monostable and Astable operations and applications - Schmitt trigger - PLL – introduction - basic principle - phase detector/comparator - voltage controlled oscillator (IC 566)
UNIT IV: VOLTAGE REGULATOR & D to A AND A to D CONVERTERS	 VOLTAGE REGULATOR: Introduction - IC Voltage Regulators - Types of Voltage Regulator - Series Op-Amp regulator - Shunt Op-Amp Regulator IC 723 general purpose regulators, Switching Regulator . D to A AND A to D CONVERTERS: Introduction, basic DAC techniques - Binary weighted resistor DAC R-2R ladder DAC - Inverted R-2R ladder DAC - ADC Techniques - counter type ADC - Successive approximation ADC - Dual slope ADC

UNIT V:	CMOS LOGIC: CMOS logic levels - MOS transistors - Basic CMOS
CMOS LOGIC, COMBINATIONAL CIRCUITS USING	Inverter, NAND,NOR,AND,XOR gates

TTL 74XX ICs	COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic
& SEQUENTIAI	gates using 74XX ICs, Four-bit parallel adder (IC 7483) - Comparator
CIRCUITS USING	(IC 7485) - Decoder (IC 74138, IC 74154).
TTL 74XX ICs	Multiplexer (IC74151), Demultiplexer (IC 74154).
	SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474,
	IC 7473), Shift Registers, Universal Shift Register (IC 74194),
UNIT VI: PROFESSIONAL	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement Social Accountability and Patriotism
COMPONENTS	Communication Skin Elinancement, Social Accountability and Fationsin
TEXT BOOKS	 D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt.Ltd.,NewDelhi,India Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice Hall / Pearson Education, NewDelhi. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S. Chand & Co. Jacob Millman.Christos Halkias.Chetan D Praikh (July 2017) Millman's Integrated Electronics Analog and Digital Circuits and system. Tata McGraw Hill, New Delhi,Second Edision. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th Edition. V. Vijayendran, 2008, Introduction to Integrated electronics (Digital & Analog), S.Viswanathan Printers & Publishers Private Ltd, Reprint. V.
REFERENCE BOOKS	 Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits, McGraw Hill, New Delhi. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi. Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata McGraw Hill, New Delhi Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New Delhi.
WEB SOURCES	 https://nptel.ac.in/course.html/digital circuits/ https://nptel.ac.in/course.html/electronics/operational amplifier/ https://www.allaboutcircuits.com/textbook/semiconductors/chpt- 7/field-effect-controlled-thyristors/

At the end of the course the student will be able to:

CO1	Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems	K1, K5
CO2	Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits.	К3
CO3	Gain knowledge about PLL, and develop the skills to design the simple circuits using	K1, K3

	IC 555 timer and can solve problems related to it.	
CO4	Learn about various techniques to develop A/D and D/A converters.	K2
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential circuits	K1, K4
K1 - Rer	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPHE1A	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

23PPHE1A	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Elective-2 . CRYSTAL GROWTH AND THIN FILMS	I YEAR – FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	nst. Hours	Marks
		0					In	

23PPHE2A	CRYSTAL GROWTH AND THIN FILMS	Elective				3	5	75
----------	----------------------------------	----------	--	--	--	---	---	----

Pre-Requisites					
Fundamentals of Crystal Physics					
Learning Objectives					
To acquire the knowledge on Nucleation and Kinetics of crystal growth					
> To understand the Crystallization Principles and Growth techniques					
To study various methods of Crystal growth techniques					
> To understand the thin film deposition methods					

> To apply the techniques of Thin Film Formation and thickness Measurement

UNITS	Course Details
UNIT I: CRYSTAL GROWTH KINETICS	Basic Concepts, Nucleation and Kinetics of growth Ambient phase equilibrium - super saturation - equilibrium of finite phases equation of Thomson - Gibbs - Types of Nucleation - Formation of critical Nucleus - Classical theory of Nucleation - Homo and heterogeneous formation of 3D nuclei - rate of Nucleation - Growth from vapour phase solutions, solutions and melts - epitaxial growth - Growth mechanism and classification - Kinetics of growth of epitaxial films
UNIT II: CRYSTALLIZATION PRINCIPLES	Crystallization Principles and Growth techniques Classes of Crystal system - Crystal symmetry - Solvents and solutions - Solubility diagram - Super solubility - expression for super saturation - Metastable zone and introduction period - Miers TC diagram - Solution growth - Low and high temperatures solution growth - Slow cooling and solvent evaporation methods - Constant temperature bath as a Crystallizer.
UNIT III: GEL, MELT AND VAPOUR GROWTH	Gel, Melt and Vapour growth techniques Principle of Gel techniques - Various types of Gel - Structure and importance of Gel - Methods of Gel growth and advantages - Melt techniques - Czochralski growth - Floating zone - Bridgeman method - Horizontal gradient freeze - Flux growth - Hydrothermal growth - Vapour phase growth - Physical vapour deposition - Chemical vapour deposition - Stoichiometry.
UNIT IV: THIN FILM DEPOSITION METHODS	Thin film deposition methods of thin film preparation, Thermal evaporation, Electron beam evaporation, pulsed LASER deposition, Cathodic sputtering, RF Magnetron sputtering, MBE, chemical vapour deposition methods, Sol Gel spin coating, Spray pyrolysis, Chemical bath deposition.

UNIT V:	Thin Film Formation and thickness Measurement Nucleation, Film
THIN FILM	growth and structure - Various stages in Thin Film formation,
FORMATION	Thermodynamics of Nucleation, Nucleation theories, Capillarity model

and Atomistic model and their comparison. Structure of Thin Film, Roll of substrate, Roll of film thickness, Film thickness measurement - Interferometry, Ellipsometry, Micro balance, Quartz Crystal Oscillator techniques. UNIT VI: Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition 2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008) 3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications. Kumbakonan, 2001) 4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHIPSi9m 4. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 55. 3. https://www.youtube.com/playlist?list=PLXHedIxby.fmuky_of_matk/									
web sources of substrate, Roll of film thickness, Film thickness measurement - Interferometry, Ellipsometry, Micro balance, Quartz Crystal Oscillator techniques. UNIT VI: Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition 2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008) 3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications. Kumbakonam, 2001) 4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLDMVogVj5nJRjLrXp3kMtrl O8X211D11p WEB SOURCES 1. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHIPSi9m 4. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHIPSi9m		and Atomistic model and their comparison. Structure of Thin Film, Roll							
Interferometry, Ellipsometry, Micro balance, Quartz Crystal Oscillator techniques. UNIT VI: PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition TEXT BOOKS 2. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications. Kumbakonam, 2001) 4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. WEB SOURCES 3. https://www.youtube.com/playlist?list=PL5MVogVj5nJRjLrXp3kMtrl O8kZ11D1Jp 2. htttps://www.youtube.com/playlist?list=PLADLRin		of substrate, Roll of film thickness, Film thickness measurement -							
techniques. UNIT VI: PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition TEXT BOOKS 1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition TEXT BOOKS 2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008) 3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth from High Temperature Solution" 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. WEB SOURCES 1. https://www.youtube.com/playlist?list=		Interferometry, Ellipsometry, Micro balance, Quartz Crystal Oscillator							
UNIT VI: PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars Webinars on Industrial Interactions/Visits, Competitive EXPOPENSIONAL COMPONENTS Expert Lectures, Online Seminars Webinars Seminars		techniques.							
UNITY: Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism Interactions/Visits, Competitive Examinations, Employable, State Plance, Crystal Growth From High Temperature Solution" Interactions/Visits, Competitive Example, Crystal Growth Rates from Solution" Inter/Visits/Visits/Visits/Visits/Visits/Visits/Visits/Visits/Visit		Expert Lectures, Online Seminars - Webinars on Industrial							
PROFESSIONAL COMPONENTS Communications (Component) Component) Interviews (Communication Skill Enhancement, Social Accountability and Patriotism Image: Communication Skill Enhancement, Social Accountability and Patriotism <		Interactions/Visits Competitive Examinations Employable and							
COMPONENTS Communication bitm Emiratement, becam recommonly and Fatholsin I. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition 2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008) 3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications. Kumbakonam, 2001) 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PL5WOrgVj5nJRjLrXp3kMtrl O8kZ11D1Jp 2. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xlL_KQFs_R_oky3Yd1Emw 5. bttps://www.youtube.com/playlist?list=PLXHedI- xbyr8xlL_KQFs_R_oky3Yd1Emw	PROFESSIONAL	Communication Skill Enhancement Social Accountability and Patriotism							
I. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition I. V. Markov Crystal Growth and Epitaxy (2004) 2nd edition 2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008) 3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications. Kumbakonam, 2001) 4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8XILKQFs_R_oky3Yd1Emw 5. https://www.youtube.com/playlist?list=PLXHedI- xbyr8XILKQFs_R_oky3Yd1Emw	COMPONENTS	communication Skin Emancement, Social Recountability and Fathorism							
TEXT BOOKS Crystal Growth and Epitaxy (2004) 2nd edition 2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008) 9. 3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications. Kumbakonam, 2001) 4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. 1. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. 4. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4.		1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation,							
TEXT BOOKS 2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008) 3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications. Kumbakonam, 2001) 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrl O8kZ11D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1DIna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8x1L_KQFs_R_oky3Yd11Emw		Crystal Growth and Epitaxy (2004) 2nd edition							
TEXT BOOKS 3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications. Kumbakonam, 2001) 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZ11D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8x1L_KQFs_R_oky3Yd1Emw 5. bttms://www.youtube.com/playlist?list=PLXHedI-xbyr8x1L_KQFs_R_oky3Yd1Emw		2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008)							
TEXT BOOKS Processes", KRU Publications. Kumbakonam, 2001) 4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZ11D1Jp 2. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8xIL_KQFs_R_oky3Yd1Emw 5. bttps://www.youtube.com/playlist?list=PLXHedI-xbyr8xIL_KQFs_R_oky3Yd1Emw		3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth							
TEXT BOOKS 4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" 5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA. 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZ11D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8x1LQFs_R_oky3Yd1Emw 5. https://www.youtube.com/playlist?list=PLXHedI-xbyr8x1LQFs_R_oky3Yd1Emw		Processes".KRU Publications, Kumbakonam, 2001)							
REFERENCE BOOKS 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PL5MVogVj5nJRjLrXp3kMtrI O8kZ11D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8x1I_kQFs_R_oky3Yd11Emw 5. https://www.alectrical4u.com/thermal.conductivity.of.matale/	TEXT BOOKS	4. 4. D. Elwell and H. J. Scheel. "Crystal Growth from High							
REFERENCE BOOKS WEB SOURCES WEB SOURCES WEB SOURCES WEB SOURCES Constant WEB SOURCES WEB SOURCES WEB SOURCES WEB SOURCES WEB SOURCES WEB SOURCES WEB SOURCES		Temperature Solution"							
REFERENCE BOOKS 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZ11D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8x11_KQFs_R_oky3Yd1Emw 5. btrs://uww alectrical/u com/(barmal conductivity of metals/		5 Heinz K Henish 1973 "Crystal Growth in Gels" Cambridge							
REFERENCE BOOKS 1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZ11D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8x1L_KQFs_R_oky3Yd1Emw 5. https://www.youtube.com/playlist?list=PLXHedI-xbyr8x1L_KQFs_R_oky3Yd1Emw		University Press USA							
 REFERENCE BOOKS P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZ11D1Jp https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF https://www.youtube.com/playlist?list=PLADLRin7kNjG1DIna9MDA 53CMKFHPSi9m https://www.youtube.com/playlist?list=PLXHedI- xby78x1LKQFs_R_oky3Yd1Emw https://www.youtube.com/thermal-conductivity.of.metals/ 		1 I.C. Brice Crystal Growth Process (John Wiley New York 1986)							
 REFERENCE BOOKS W. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZl1D1Jp https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m https://www.youtube.com/playlist?list=PLXHedI- xbyr8x11_KQFs_R_oky3Yd1Emw https://www.alectrical/u.com/thermal.conductivity.of.metals/ 		2 P. Ramasamy and F. D. Gnanam 1983 "UGC Summer School							
REFERENCE 3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZl1D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8xIL_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u com/thermal_conductivity.of_metals/		Notes"							
REFERENCE BOOKS 3. M. Onora and K. C. Keid, Modeling of Crystal Growth Rates from Solution" 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZl1D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xII_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal.conductivity.of.metals/		2 M Ohors and P. C. Paid "Modaling of Crystal Growth Pates from							
BOOKS 4. H.E. Buckley, 1986, Crystal Growth, John Wiley and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZl1D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xII_KQFs_R_oky3Yd1Emw 5. https://www.electrical4u.com/thermal.conductivity_of.metals/	REFERENCE	Solution?							
 4. H.E. Buckley, 1986, Crystal Growth, John Whey and Sons, New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZl1D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xI1_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal-conductivity.of.metals/ 	BOOKS	4 U.E. Duckley, 1086 Crystal Crowth John Wiley, and Sone							
New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZl1D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8xI1_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal-conductivity_of_metals/		4. H.E. Buckley, 1960, Crystal Growth, John Whey and Sons,							
 S. B.R. Pampin, 1980, Crystal Growth, Pergman Press, London. 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZl1D1Jp 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xIl_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal-conductivity-of.metals/ 		New 101k							
WEB SOURCES 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrI O8kZl1D1Jp WEB SOURCES 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xI1_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal-conductivity-of.metals/		5. B.K. Pampin, 1980, Crystal Growth, Pergman Press, London.							
 WEB SOURCES WEB SOURCES Anttps://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF Anttps://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m Anttps://www.youtube.com/playlist?list=PLXHedI- xbyr8xI1_KQFs_R_oky3Yd1Emw Anttps://www.electrical/u.com/thermal-conductivity-of.metals/ 		1 https://www.youtube.com/playlist?list=PL hMVogVi5nIRiLrXn3kMtrL							
WEB SOURCES 2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7 KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xI1_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal-conductivity-of.metals/		O8kZl1D1Jp							
WEB SOURCES KeTLUuBu3WF 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xI1_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal-conductivity-of-metals/		2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7							
 WEB SOURCES 3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA 53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xIl_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal_conductivity_of_metals/ 		KeTLUuBu3WF							
53CMKFHPSi9m 4. https://www.youtube.com/playlist?list=PLXHedI- xbyr8xI1_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal-conductivity-of-metals/	WEB SOURCES	3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA							
 4. https://www.youtube.com/playlist?list=PLXHedl- xbyr8xIl_KQFs_R_oky3Yd1Emw 5. https://www.electrical/u.com/thermal_conductivity_of_metals/ 		53CMKFHPSi9m							
XDyF8XII_KQF8_K_0Ky3Y01EMW 5 https://www.electrical/u.com/thermal_conductivity_of_metals/		4. https://www.youtube.com/playlist?list=PLXHedl-							
		xuyioxii_KQFS_K_0Ky5101EIIIW 5 https://www.electrical/u.com/thermal_conductivity_of_metals/							

At the end of the course, the student will be able to:

CO1	Acquire the Basic Concepts, Nucleation and Kinetics of crystal growth	K1			
CO2	Understand the Crystallization Principles and Growth techniques	K2, K4			
CO3	Study various methods of Crystal growth techniques	K3			
CO4	Understand the Thin film deposition methods	K2			
CO5Apply the techniques of Thin Film Formation and thickness MeasurementK3, K4					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPHE2A	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

23PPHE2A	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Core 4 - STATISTICAL MECHANICS	I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH4	STATISTICAL MECHANICS	Core				5	6	75

Pre-Requisites

Knowledge of Laws of thermodynamics, phase transition, entropy, ensembles, partition function, classical and quantum statistics, thermal equilibrium, Brownian motion

Learning Objectives

- To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistic and thermodynamic quantities
- > To comprehend the concept of partition function, canonical and grand canonical ensembles
- To grasp the fundamental knowledge about the three types of statistics
- To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

UNITS	Course Details
UNIT I:	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase
	transitions and Ehrenfest's classifications -Third law of Thermodynamics.
PHASE	Order parameters - Landau's theory of phase transitionGibb's Helmholtz
TRANSITIONS	relation – Nernst heat theorem of third law.
UNIT II:	Foundations of statistical mechanics - Micro and Macro states - Statistical
	equilibrium - Micro canonical ensemble - Phase space - Entropy - Connection
STATISTICAL	between statistics and Themodynamics – Entropy of an ideal gas using the
MECHANICS AND	micro canonical ensemble - Entropy of mixing and Gibb's paradox.
I HEKMUD I NAMIUS	
UNIT III:	Density distribution of phase space - Liouville's theorem - Canonical and
	grand canonical ensembles. Partition function Calculation of statistical
CANUNICAL AND CRAND	guantitias Thermodynamic properties of distance molecule
CANONICAL	qualitities - mermodynamic properties of diatomic molecule
ENSEMBLES	
UNIT IV:	Principles and Law of equipartition of energy Maxwell-Boltzmann statistics -
	Fermi-Dirac statistics – Ideal Fermi gas – Degeneracy - Bose-Einstein
CLASSICAL AND	statistics - Plank radiation formula - Ideal Bose gas - Bose-Einstein
QUANTUM	condensation.– Liquid Helium.
STATISTICS	

UNIT V:	Quantum theory of specific heat: Einstein's theory - Debye's theory -
REAL GAS, ISING MODEL AND FLUCTUATIOS	Ferromagnetism: Ising model - Mean-field theories of the Ising model in three, two and one dimensions Brownian motion - Langevin's theory -Fluctuations in energy, pressure, volume, and enthalpy- The Fokker-Planck equation
UNIT VI: PROFESSIONAI COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism.

	1. Singhal, Agarwal, Prakash, Thermodynamics and Statistical
	Physics(Prakashan, Meerut, 2003.
	2. B. K. Agarwal and M. Eisner, Statistical Mechanics, Second Edition
	New Age International, New Delhi. 3rd edition, 2013).
	3. F. Reif, 2010, Fundamentals of Statistical and Thermal Physics, McGraw -
	Hill, New York.
TEXT BOOKS	4. S. C. Garg, R. M. Bansal and C. K. Gosh, Thermal Physics: with Kinetic
	Theory, Thermodynamics and Statistical Mechanics (McGraw Hill
	Education, 2nd edition, 2017).
	5. R. K. Pathria and P. D. Beale, Statistical Mechanics (Academic Press, 3rd
	edition, 2011).
	6. D. A. McQuarrie, Statistical Mechanics (Viva Books India, Viva Student
	Editi on, 2018).
	1. L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics, Pergamon Press,
	Oxford.
	2. K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London
DEEEDENCE	3. W. Greiner, L. Neiseand H.Stoecker, Thermodynamics and Statistical
ROOKS	Mechanics, Springer Verlang, New York. 1st edition, 1995
BOOKS	4. A. B. Gupta, H. Roy, 2002, Thermal Physics, Books and Allied, Kolkata.
	5. J. K. Bhattacharjee, 1996, Statistical Mechanics: An Introductory Text,
	Allied Publication, New Delhi.
	6.S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New Delhi
	1. https://byjus.com/chemistry/third-law-of-thermodynamics/
WFR	2. https://web.stanford.edu/~peastman/statmech/thermodynamics.html
SOURCES	3. https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodynamics
SOURCES	4. https://en.wikipedia.org/wiki/Grand_canonical_ensemble

At the end of the course the student will be able to:

CO1	To examine and elaborate the effect of changes in thermodynamic quantities on the	V 5
	states of matter during phase transition	N3
CO2	To analyze the macroscopic properties such as pressure, volume, temperature,	
	specific heat, elastic moduli etc. using microscopic properties like intermolecular	
	forces, chemical bonding, atomicity etc.	K4
	Describe the peculiar behaviour of the entropy by mixing two gases	
	Justify the connection between statistics and thermodynamic quantities	
CO3	Differentiate between canonical and grand canonical ensembles and to interpret the	K1

	relation between thermodynamical quantities and partition function	
CO4	To recall and apply the different statistical concepts to analyze the behaviour of ideal Fermi gas and ideal Bose gas and also to compare and distinguish between the three types of statistics.	K4, K5
CO5	To discuss and examine the thermodynamical behaviour of gases under fluctuation and also using Ising model	К3
K1 - Re	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPH4	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

23PPH4	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Core 5 - QUANTUM MECHANICS – I	I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH5	QUANTUM MECHANICS – I	Core				5	6	75

Pre-Requisites
Knowledge of Newton's laws of motion, Schrodinger's equation, integration, differentiation.
Learning Objectives
> To develop the physical principles and the mathematical background important to quantum
mechanical descriptions.

- > To describe the propagation of a particle in a simple, one-dimensional potential.
- To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

UNITS	Course Details
UNIT I: BASIC FORMALISM	Interpretation of the wave function – Time dependent Schrodinger equation – Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation
UNIT II: ONE DIMENSIONAL AND THREE- DIMENSIONAL ENERGY EIGEN VALUE PROBLEMS	Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Rigid rotator - Hydrogen atom
UNITIII: GENERAL FORMALISM	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal
UNIT IV: APPROXIMATIO N METHODS	Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – Application to simple harmonic oscillator.

UNIT V: ANGULAR MOMENTUM	Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle.						
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism						
TEXT BOOKS	 P.M. Mathews and K. Venkatesan, A Text book of Quantum mechanics TMH, New Delhi,. 6th edision, 2013 S. Rajasekar and R. Velusamy, Quantum Mechanics: The Fundamentals (CRC Press, Boca Raton, 2015). Quantum Mechanics – Nouredine Zettili, John Wiley & Sons, Ltd, 2nd Edition, 2009. Ajoy Ghatak and S.Loganathan, Quantum mechanics , TMH 6th edision 2015 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Delhi, 2009. David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 2011. 						
REFERENCE BOOKS	 Leonard I Schiff, Quantum mechanics Fourth Edition, Mc Graw Hill Education 2016. Introduction to Quantum mechanics Second Edition David J.Griffiths, Published by Pearson Education 2015. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi, 1985. V.Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International Ltd, Oxford, 2011. SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition, S.Chand& Co., New Delhi, 1982. 						
WEB SOURCES	 http://research.chem.psu.edu/lxjgroup/download_files/chem565-c7.pdf http://www.feynmanlectures.caltech.edu/III_20.html http://web.mit.edu/8.05/handouts/jaffe1.pdf https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/Lecture1.pdf https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf 						

At the end of the course the student will be able to:

CO1	Demonstrates a clear understanding of the basic postulates of quantum mechanics	
	which serve to formalize the rules of quantum	K1, K5
	Mechanics	
CO2	Is able to apply and analyze the Schrodinger equation to solve one dimensional	K3 KA
	problems and three dimensional problems	м <i>э</i> , м4
CO3	Can discuss the various representations, space time symmetries and formulations of	V 1
	time evolution	N1

CO4	Can formulate and analyze the approximation methods for various quantum	KA K5
	mechanical problems	кч, кз
CO5	To apply non-commutative algebra for topics such as angular and spin angular	кз кл
	momentum and hence explain spectral line splitting.	13, 134
K1 - F	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

23PPH5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

23PPH5	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Core 6 – ELECTRONICS LABORATORY	I YEAR - SECOND SEMESTER

Subject Code	Category T	Т	Р	Credits	Inst. Hours	Marks
-----------------	---------------	---	---	---------	-------------	-------

23PPH6P	ELECTRONICS LABORATORY	Core				4	6	75
---------	------------------------	------	--	--	--	---	---	----

Pre-Requisites						
Knowledge and handling of basic electronics experiments of Physics						
Learning Objectives						
> To understand the concept of mechanical behavior of materials and calculation of same using						
appropriate equations.						
> To calculate the thermodynamic quantities and physical properties of materials.						
The surface the entireland electrical annuation of materials						

- To analyze the optical and electrical properties of materials.
- ➤ To observe the applications of SCR and UJT.
- > To study the different applications of operational amplifier circuits.
- To learn about Combinational Logic Circuits and Sequential Logic Circuits

Course Details

(Any Twelve Experiments from the list)

- 1. Characteristics of UJT
- 2. Half and Full Subtractor
- 3. Half and Full Subtractor
- 4. Characteristics of SCR.
- 5. Construction of dual power supply using ICs (78XX and 79XX
- 6. K- Map.
- 7. Solving simultaneous equations IC 741 / IC LM324
- 8. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter.
- 9. Operational amplifier Digital to analog conversion by Binary weighted method.
- 10. Operational amplifier Digital to analog conversion by R-2R ladder method
- 11. Design and study of Monostable multivibrator (IC 555).
- 12. Design and study of Bistable multivibrator (IC 555).
- 13. Design and study of Astable Multivibrator by 555 timer.
- 14. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 15. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 16. Study of R-S, clocked R-S,J-K and D-Flip flop using NAND gates
- 17. IC 7490 as scalar and seven segment display using IC7447
- 18. Multiplexer and Demultiplexer.
- 19. One bit comparator.
- 20. Frequency divider using IC 555.
- 21. Shift register.
- 22. Operational amplifier Waveform generators.

	1. Practical Physics, Gupta and Kumar, PragatiPrakasan.
	2. Kit Developed for doing experiments in Physics- Instruction manual,
	R.Srinivasan K.R Priolkar, Indian Academy of Sciences.
	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
	Economy Edition.
TEXT BOOKS	4. Electronics Laboratory Manual, Department of Physics, ST. Joesph College Trichy (2000)
	 B.K. Jones, Electronics for Experimentation and Research, Prentice- Hall(1986).
	6. Electronic Laboratory Primer a design approach, S. Poornachandra,
	B.Sasikala, Wheeler Publishing, New Delhi.
	7. Electronic lab manual Vol I, K ANavas, Rajath Publishing.
	8. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition.
	1. An advanced course in Practical Physics, D.Chattopadhayay,
	C.RRakshit, New Central Book Agency Pvt. Ltd.
	2. Advanced Practical Physics, S.P Singh, PragatiPrakasan
	3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &
REFERENCE	Sons (Asia) Pvt.ltd
BOOKS	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishing
	5. Electronic Laboratory Primer a design approach, S. Poornachandra,
	B.Sasikala, Wheeler Publishing, New Delhi

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus.	K2					
CO2	Acquire knowledge of thermal behaviour of the materials.	K1					
CO3	Understand theoretical principles of magnetism through the experiments.	K2					
CO4	Acquire knowledge about arc spectrum and applications of laser.	K1					
CO5	Improve the analytical and observation ability in Physics Experiments.	K4					
CO6	Conduct experiments on applications of FET and UJT.	K5					
CO7	Analyze various parameters related to operational amplifiers.	K4					
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's.	K2					
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	К3					
CO10	Analyze the applications of counters and registers	K4					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPH6P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	S	S	2	2	2	3	3

CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

23PPH6P	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
40	60	100	

Elective - 3.	ADVANCED MATHEMATICAL PI	HYSICS	I YEAR SECOND SEMESTER					ER
Subject Code	Subject Name	Category	L	Т	Р	Credits	nst. Hours	Marks

Pre-Requisites						
Good knowledge in basic mathematics						
Learning Objectives						
To educate and involve students in the higher level of mathematics and mathematical method relevant and applicable to Physics						

UNITS	Course Details
UNIT I: DISCRETE GROUPS	Definition of a group, subgroup, class, Lagrange's theorem, invariant subgroup, Homomorphism and isomorphism between two groups. Representation of a group, unitary representations, reducible and irreducible representations Schur's lemmas, orthogonality theorem, character table, reduction of Kronecker product of representations.
UNIT II:	Linear Partial differential equations - Separation of variables - Separation of
PAKIIAL DIFFERENTIAL	Reimnoitz equation in Cartesian coordinates - Solution of Laplace's equation in Cartesian Spherical polar and Cylindrical Circular and Cylindrical Harmonics
EQUATIONS	coordinates - Symmetry and Separability - One dimensional and Two
	dimensional heat flow equation.
UNIT III:	Green's functions -Proof of symmetry- properties - Methods of solutions in one
GREEN'S	dimension – Applications : Green's function for poisson equation and Quantum
FUNCTIONS	mechanical scattering problem - Linear integral equations - Neumann series-
AND INTEGRAL	Wronskian - Eigen function expansion of green's function - Applications.
EQUATIONS	
UNIT IV: TENSORS	Definition - Co-ordinate transformation Contravariant and covariant vectors and tensors, mixed tensors; tensor algebra, addition, subtraction, direct product of tensors, symmetric and antisymmetric tensors - Indicial and Summation conventions - Kronecker delta symbol - Tensors of higher Ranks - Conjugate tensors. Vectors and tensors under general co-ordinate transformations.
UNIT V: TENSOR CALCULUS	Covariant derivative, affine connection. Metric tensors : Spherical and Cylindrical co-ordinates - Riemannian Spaces - Christoffell's three index symbols – Relations between the two kinds - Transformation laws of Christofell's symbols.

Lectures, Online Seminars Webinars Industrial Expert on -**UNIT VI:** Interactions/Visits, Competitive Examinations, Employable and PROFESSIONAL Communication Skill Enhancement, Social Accountability and Patriotism **COMPONENTS**

	1. B.D.Gupta, Mathematical Physics, Vikas publishing ltd, India(2010).							
	2. H.K Dass & Dr.Ramavarma, Mathematical Physics, Sultan Chand &							
	Sons, New Delhi.(2010)							
	3. M. T. Vaughn, Introduction to Mathematical Physics (Wiley India,							
	1st edition, 2013).							
TEXT BOOKS	4. Sathya prakash, Mathematical Physics, Sultan Chand & Sons, New							
	Delhi. 6^{th} edition(2012).							
	5. P.K.Chattopadhyay, Mathematical Physics, New Age							
	international.NewDelhi, 1992.							
	6. A.W.Joshi, Elements of Group theory for physicists, Wiley Eastern							
	Ltd., New Delhi 1997.							
	1. V. Balakrishnan, Mathematical Physics with Applications, Problems							
	and Solutions (Ane Books Pyt. Ltd. 1st edition, 2018).							
	2 G Arfken H Weber and F E Harris Mathematical Method for							
REFERENCE	Physicists (Academic Press 7th edition 2012)							
BOOKS	3 D G Zill Advanced Engineering Mathematics (Iones & Bartlett 6th							
	edition 2017)							
	4 E Kreyszig Advanced Engineering Mathematics(Wiley International							
	Student Version 10th edition 2016)							
	1 https://ydoc.pub/documents/unitary_symmetry_and_elementary_particles_							
	1. https://vooc.pub/occuments/unitary-symmetry-and-elementary-particles- c4asfeithkc0							
	2. https://physics.iith.ac.in/HEP Physics/slides/poplawskitalk.pdf							
WEB SOURCES	3. https://www.hindawi.com/journals/amp/							
	4. https://projecteuclid.org/journals/advances-in-theoretical-and-							
	mathematical-physics							
	5. https://www.springer.com/journal/11232							

At the end of the course, the student will be able to:

CO1	Gained knowledge of both discrete and continuous groups its apply various important	V1					
	theorems in group theory.	N1					
CO2	Gained knowledge of linear Partial differential equations and One, Two dimensional	K3					
CO3	Gained knowledge of Green's functions and eigen functions of application of physics	K5					
CO4	Equipped to basic of tensors under general co-ordinate transformations	K4, K5					
CO5	Developed skills to apply tensors to Christoffell's three index symbols.	K2, K3					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES: Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPHE3A	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	3	3
CO2	3	3	2	2	2	2	2	2	3	2
CO3	3	3	2	2	2	2	2	2	3	2
CO4	3	3	2	2	2	2	2	2	3	2
CO5	3	3	2	2	2	2	2	2	3	2

23PPHE3A	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	2	2	2	2	3	3
CO2	3	3	2	2	2	2	2	2	3	2
CO3	3	3	2	2	2	2	2	2	3	2
CO4	3	3	2	2	2	2	2	2	3	2
CO5	3	3	2	2	2	2	2	2	3	2

Continuous Internal AssessmentEnd Semester Examination		Total	Grade
25	75	100	

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPHE4B	MICROPROCESSOR AND MICROCONTROLLER	Elective				3	4	75

Pre-Requisites

Knowledge of number systems and binary operations

Learning Objectives

- To provide an understanding of the architecture and functioning of microprocessor 8085A and to the methods of interfacing I/O devices and memory to microprocessor
- To introduce 8085A programming and applications and the architecture and instruction sets of microcontroller 8051
- > To acquire knowledge of microprocessor assembly language program
- > Gain knowledge of microprocessor interrupts programming and interfacing.
- >. To provide an understanding of the 8081 microcontroller hardware/.

UNITS	Course Details
UNIT I:8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR INTERFACING	Instruction set - Addressing modes - Programming techniques - Memory mapped I/O scheme- I/O mapped I/O scheme - Memory and I/O interfacing- Data transfer schemes - Interrupts of 8085 - Programmable peripheral interface (PPI) - Control group and control word- Programmable DMA controller - Programmable interrupt controller – Programmable communication interface - Programmable counter / interval timer.
UNIT II: 8085 INTERFACING APPLICATIONS	Seven segment display interface - Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities –Voltage and current) Measurement of physical quantities (Temperature an strain).
UNIT III: 8051 MICROCONTROLLER HARDWARE	Introduction – Features of 8051 – 8051 Microcontroller Hardware: Pin-out 8051, Central Processing Unit (CPU), internal RAM, Internal ROM, Register set of 8051 – Memory organization of 8051 – Input/Output pins, Ports and Circuits – External data memory and program memory: External program memory, External data memory.
UNIT IV: 8051 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING	Addressing modes – Data moving (Data transfer) instructions: Instructions to Access external data memory, external ROM / program memory, PUSH and POP instructions, Data exchange instructions – Logical instructions: byte and bit level logical operations, Rotate and swap operations – Arithmetic instructions: Flags, Incrementing and decrementing, Addition, Subtraction, Multiplication and division, Decimal arithmetic – Jump and CALL instructions: Jump and Call program range, Jump, Call and subroutines – Programming.

UNIT V:8051 Interrupts – Interrupt vector table – Enabling and disabling anINTERRUPTinterrupt – Timer interrupts and programming – ProgrammingPROGRAMMING ANDexternal hardware interrupts – Serial communication interrupts andINTERFACING TOprogramming – Interrupt priority in the 8051 : Nested interrupts ,

EXTERNAL WORLD	Software triggering of interrupt. LED Interface Seven segment
	display interface- Interfacing of Digital to Analog converter and
	Analog to Digital converter - Stepper motor interface -
	Measurement of electrical quantities – Voltage and current)
	Measurement of physical quantities(Temperature an strain).
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications (2009). Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with 8085, Penram International Publishing (2013). B. Ram, Fundamentals of Microprocessors & Microcontrollers, DhanpatRai publications New Delhi (2016). V. Vijayendran, 2005, Fundamentals of Microprocessor- 8085", 3rd Edition S.Visvanathan Pvt, Ltd. Microprocessor and micro controller,(Krishna kant ,New Delh.j 2014.)
REFERENCE BOOKS	 Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc Graw Hill Publications (2008) Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051 Microcontroller and Embedded Systems, Pearson Education (2008). Soumitra Kumar Mandal, Microprocessors and Microcontrollers Architecture, Programming and Interfacing using 8085, 8086, 8051, Mc Graw Hill Education (India) Private Limited, New Delhi (2015 W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming, Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi.

At the end of the course, the student will be able to:

CO1	Gain knowledge of architecture and working of 8085 microprocessor.	K1					
CO2	Get knowledge of architecture and working of 8051 Microcontroller.	K1					
CO3	Be able to write simple assembly language programs for 8085A microprocessor.	K2, K3					
CO4	Able to write simple assembly language programs for 8051 Microcontroller.	K3, K4					
CO5	Understand the different applications of microprocessor and microcontroller.	K3,K 5					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	2	2	2	2	2
CO2	2	2	2	2	2	2	2	2	2	2
CO3	3	3	3	3	3	2	2	2	2	2
CO4	3	3	3	3	3	2	2	2	2	2
CO5	3	3	3	3	3	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	3	2	2	2	2	2
CO2	2	2	2	2	1	2	2	2	2	2
CO3	3	3	3	3	3	2	2	2	2	2
CO4	3	3	3	3	3	2	2	2	2	2
CO5	3	3	3	3	3	2	2	2	2	2

Continuous Internal Assessment	Continuous Internal AssessmentEnd Semester Examination		Grade
25	75	100	

Skill Enhancement Course-I	I YEAR - SECOND SEMESTER
PHYSICS FOR SKILL ENHANCEMENT-I	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPHSE1	PHYSICS FOR SKILL ENHANCEMENT-I	Skill Enhancement				2	4	75

Pre-Requisites	
Knowledge of applications physics.	
Learning Objectives	
- > To understand the needs of research and to acquire the knowledge about research trends.
- > To understand the working mechanisms of opto- electronic devices.
- > To acquire the knowledge about satellite structures and to satellite propulsion.
- To acquire the knowledge about universe and to understand the scaling to measurements used in universe.
- > To acquire knowledge about energy resources and to understand the energy conversion.

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPHSE1	PHYSICS FOR SKILL ENHANCEMENT-I	Skill Enhancement				2	4	75

UNITS	Course Details
UNIT I: RESEARCH	Definition of Research – Types of Research – Formulating a Research Problem - Research Execution - Report Writing - Modern Research Trends in Physics: Quantum Computer - Particle Accelerator – Council European Nuclear Research (CERN).
UNIT II: OPTO-ELECTRONIC DEVICES	PN photodiode – Solar Cell – Light Emitting Diode (LED) — LASER Diode – Liquid Crystal Display (LCD) – Plasma Displays.
UNIT III: SATELLITE MECHANISM	Component of Satellite – Polar and Geostationary Satellite – Satellite Communication – GPS – Spacecraft Propulsion: Principle, Types.
UNIT IV: UNIVERSE	Solar Systems – Electromagnetic Radiation – Galaxy – Black Hole – Dark Matter –Expansion of Universe – Cosmological Red shift – Scaling of Universe: Light Year – Astronomical Unit – Parsec.
UNIT V: ENERGY RESOURCE AND CONVERSION	Renewable Energy Resources: Solar Cell – Wind Mill – Hydro Power – Tidal – Geothermal – Biomass. Non-renewable Energy Resources: Oil – Natural gas – Coal – Nuclear Energy.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

REFERENCE BOOKS	 Umesh Kumar B Dubey, D P Kothari, 2022, <i>Research</i> <i>Methodology: Techniques and Trends</i>, CRC Press, Florida, USA. S. C. Gupta, 2015, <i>Opto-Electronic Devices and Systems</i>, PHI Learning PVT Ltd, Delhi. A.K. Maini, Varsha Agarwal, 2011, <i>Satellite Technology</i>, John Wiley & Sons Ltd, United Kingdom. Dinwiddie, Robert; Philip Eales, 2020, <i>Universe</i>, Martin Rees London. Tushar K. Ghosh, Mark A. Prelas, 2011, <i>Energy Resources and</i>
WEB SOURCES	 Systems, Springer Science & Business Media. https://www.questionpro.com/blog/what-is-research https://www.geeksforgeeks.org/optoelectronic-devices https://testbook.com/physics/rocket-propulsion https://www.space.com/52-the-expanding-universe-from-the- big-bang-to-today.html https://www2.tulane.edu/~sanelson/eens1110/energy.html

At the end of the course, the student will be able to:

CO1	Understand the needs of research and to acquire the knowledge about research trends.	K2,K3,K4			
CO2	Understand the working mechanisms of opto- electronic devices.	K1,K2			
CO3	Acquire the knowledge about satellite structures and to satellite propulsion.	K2, K4			
CO4	Acquire knowledge about universe and to understand the scaling to measurements used in universe.	K3, K2			
CO5	Acquire knowledge about energy resources and to understand the energy conversion	K1,K5			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

MAPPING WITH PROGRAM OUTCOMES:

23PPHSE1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	2	2	2	2	2
CO2	3	3	3	3	3	2	2	2	2	2
CO3	3	3	3	3	3	2	2	2	2	2
CO4	3	3	3	3	3	2	2	2	2	2
CO5	3	3	2	2	2	2	2	2	2	2

23PPHSE1	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	3	2	2	2	2	2
CO2	2	2	2	2	1	2	2	2	2	2
CO3	3	3	2	3	2	2	2	2	2	2

CO4	3	3	3	3	3	2	2	2	2	2
CO5	3	3	3	3	2	2	2	2	2	2

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Core 7 - Q	II YEAR - THIRD SEMESTER							
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH7	QUANTUM MECHANICS – II	Core				5	6	75

Pre-Requisites
Knowledge of postulates of Quantum mechanics, properties of Hermitian operators, ladder operators,
degeneracy, angular momentum techniques and commutation rules
Learning Objectives

- > Formal development of the theory and the properties of angular momenta, both orbital and spin
- To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Barn approximation.
- Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field
- To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts
- To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

UNITS	Course Details
	Scattering amplitude - Cross sections - Born approximation and its validity -
UNIT I:	Scattering by a screened coulomb potential – Yukawa potential – Partial wave
SCATTERING	analysis – Scattering length and Effective range theory for s wave – Optical
THEORY	theorem – Transformation from centre of mass to laboratory frame.
UNIT II.	Time dependent perturbation theory - Constant and harmonic perturbations -
UNIT II; DEDTUDDATION	Fermi Golden rule – Transition probability Einstein's A and B Coefficients –
	Adiabatic approximation – Sudden approximation – Semi – classical treatment
	of an atom with electromagnetic radiation – Selection rules for dipole radiation
UNIT III:	Klein – Gordon Equation – Charge And Current Densities – Dirac Matrices –
RELATIVISTIC	Dirac Equation – Plane Wave Solutions – Interpretation of Negative Energy
QUANTUM	States – Antiparticles – Spin of Electron – Magnetic Moment of an Electron
MECHANICS	Due To Spin
UNIT IV:	Covariant form of Dirac Equation – Properties of the gamma matrices – Traces
DIRAC	- Relativistic invariance of Dirac equation – Probability Density – Current four
EQUATION	vector – Bilinear covariant – Feynman's theory of positron (Elementary ideas
	only without propagation formalism)

UNIT V:	Classical fields Euler Lagrange equation Hamiltonian formulation
CLASSICAL	Noether's theorem Quantization of real and complex scalar fields Creation
FIELDS AND	Appibilition and Number operators Fack states Second Quantization of K C
SECOND	Annihilation and Number operators – Fock states – Second Quantization of K-G
QUANTIZATION	field.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill
COMPONENTS	Enhancement, Social Accountability and Patriotism
	1. P.M. Mathews and K. Venkatesan, A Text book of Quantum mechanics
	TMH, New Delhi, 6 th edision, 2013.
	2. S. Rajasekar and R. Velusamy, Quantum Mechanics: The Fundamentals
	(CRC Press, Boca Raton, 2015
TEXT BOOKS	3. G.Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of India,
	NewDelhi,2009
	4. Introduction to Quantum mechanics Second Edition David

	J.Griffiths, Published by Pearson Education 2015.
	5. V. Devanathan, Quantum Mechanics, 1st Edition, Narosa Publishing
	House, New Delhi, 2005.
	1. B.K.Agarwal & HariPrakash, Quantum Mechanics, 7th reprint, PHI
	Learning Pvt. Ltd., New Delhi, 2009.
	2. Deep Chandra Joshi, Quantum Electrodynamics and Particle
	Physics, 1 st edition, I.K. International Publishing house Pvt. Ltd., 2006
REFERENCE	3. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and
BOOKS	Applications, 6 th Edition, Macmillan India, New Delhi.2015.
	4. Nouredine Zettili, Quantum mechanics concepts and applications, 2nd
	Edition, Wiley, 2017.
	5. Leonard I Schiff, Quantum mechanics Fourth Edition, Mc Graw Hill
	Education 2016.
	1. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-
	2013/lecture notes/MIT8_05F13_Chap_09.pdf
	2. http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch1.pdf
WEB SOURCES	3. http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf
	4. https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-
	gk.pdf
	5. https://web.mit.edu/dikaiser/www/FdsAmSci.pdf

At the end of the course the student will be able to:

CO1	Familiarize the concept of scattering theory such as partial	171
	wave analysis and Born approximation	
CO2	Give a firm grounding in relativistic quantum mechanics, with emphasis on Dirac	K)
	equation and related concepts	N2
CO3	Discuss the relativistic quantum mechanical equations namely, Klein-Gordon and	
	Dirac equations and the phenomena accounted by them like electron spin and	K1, K4
	magnetic moment	
CO4	Introduce the concept of covariance and the use of Feynman graphs for depicting	V1 V3
	different interactions	мі, кэ
CO5	Demonstrate an understanding of field quantization and the explanation of the	K5
	scattering matrix.	IN J
K1 - Rei	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

23PPH7	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3

CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	2	2	3	3	2	2	2	3	3
CO5	2	2	2	3	3	2	2	2	3	3

23PPH7	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	2	2	3	3	2	2	2	3	3
CO5	2	2	2	3	3	2	2	2	3	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Core 8- A MOLECU	II YEAK - THIKD SEMESTEK								
							S		

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH8	ATOMIC PHYSICS AND MOLECULAR SPECTROSCOPY	Core				5	6	75

Pre-Requisites
Thorough understanding of electromagnetic spectrum, mathematical abilities, knowledge of molecules,
their structure, bond nature, physical and chemical behaviour
Learning Objectives
To comprehend the theory behind atomic spectra, Spectroscopic terms.
To know the modeling minimum along with an exemption of construction of different times of

To know the working principles along with an overview of construction of different types of spectrometers involved

- > To explore various applications of these techniques in R &D.
- Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
- > Understand this important analytical tool

UNITS	CourseDetails
	Quantum states of electron in atoms - Hydrogen atom spectrum - Electron spin -
UNIT I:	Stern Gerlach experiment - Spin-orbit interaction - Lande interval rule - Two
	electron systems, LS-JJ coupling schemes - Fine structure - Spectroscopic terms
ATOMIC	and selection rules - Hyperfine structure - Isotopic shift.
SPECTRA	Evolution and the formations Devilia analysis maintain to Deviadia
	Exchange symmetry of wave functions - Pauli's exclusion principle - Periodic
	iable - Alkall type spectra - Equivalent electrons - Hund's rule.
	Zeeman and Paschen Back effect of one and two electron systems - Selection
UNIT II:	rules - Stark effect - Inner shell vacancy - X-ray- Auger transitions - Compton
ATOMC IN	Effect.
A I UNIS IN	Molecules: Covalent, Ionic and van der Waal's interactions - Born Oppenheimer
EATEKNAL FIELDS AND V	approximation.
FIELDS AND X -	X - ray spectra: origin of x-rays - Emission spectra and double spectra -
KAY SPECIRA	Absorption spectra.
UNIT III:	Rotational spectra of diatomic molecules - Intensities of spectral lines The
	effect of isotopic substitution - the non-rigid rotator - Rotational spectra of poly
MICROWAVE	atomic molecules - Linear, symmetric top and asymmetric top molecules -
AND IR	Experimental techniques - Vibrating diatomic molecule - Diatomic vibrating
SPECTROSCOPY	rotator: Linear and symmetric top molecules - Analysis by infrared techniques.

	Theory of Raman Scattering - Classical theory - molecular polarizability -
LINIT IV.	polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman
UNIT IV:	spectra of linear molecule - symmetric top molecule - Stokes and anti-stokes line-
DAMAN	SR branch -Raman activity of H2O and CO2 -Mutual exclusion principle-
RAMAN	determination of N2O structure -Instrumentation technique and block diagram -
SPECIKUSCUPI	structure determination of planar and non-planar molecules using IR and Raman
	techniques - FT Raman spectroscopy- SERS.
	Nuclear and Electron spin-Interaction with magnetic field - Population of Energy
	levels - Larmor precession- Relaxation times - Double resonance- Chemical shift
	and its measurement - NMR of Hydrogen nuclei - Indirect Spin -Spin Interaction –
UNIT V:	interpretation of simple organic molecules - Instrumentation techniques of NMR
RESONANCE	spectroscopy – NMR in Chemical industries- MRI Scan.
SPECTROSCOPY	Electron Spin Resonance: Basic principle –Total Hamiltonian (Direct Dipole-
	Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure
	(Hydrogen atom) - ESR Spectra of Free radicals -g-factors - Instrumentation -
	Medical applications of ESR.

UNIT VI-	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill Enhancement,
COMPONENTS	Social Accountability and Patriotism
	1. C N Banwell and E M McCash, 1994, Fundamentals of Molecular
	Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi.
	2. A. Beiser, Concepts of Modern Physics (McGraw Hill, New York, 1995)
	3. Manas Chanda, Atomic Structure and Chemical Bond, TMH 4 th edision
	2000.
TEXT BOOKS	4. G Aruldhas, 2 nd Edision 2008, Molecular Structure and Molecular
	Spectroscopy, Prentice–Hall of India, New Delhi.
	5. B.K. Sharma, 2015, <i>Spectroscopy</i> , Goel Publishing House Meerut.
	6. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition),
	New Age International Publishers.
	1. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New
	Delhi.
	2. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal
	Society of Chemistry, RSC, Cambridge.
REFERENCE	3. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation,
BOOKS	SpringerLink.
	4. Vimal Kumar Jain, Introduction to molecular spectroscopy(Alpha science
	international,Ltd,2007.
	5. Introduction to molecular spectroscopy - G.M.Barrow (McGraw Hill, New
	York, 2018.)
	1. https://www.youtube.com/watch?v=0iQhirTf2PI
	2. https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5
WEB	3. https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-8jEee
SOURCES	4. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
	5. https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-
	introduction-XCWRu

At the end of the course the student will be able to:

CO1	Understand fundamentals of atomic spectra, view molecules as elastic rotors and interpret their behaviour. Able to quantify their nature and correlate them with their characteristic properties.	K2
CO2	Understand the working principles of spectroscopic instruments and theoretical background of IR spectroscopy. Able to correlate mathematical process of Fourier transformations with instrumentation. Able to interpret vibrational spectrum of small molecules.	K2, K3
CO3	Interpret structures and composition of molecules Rotational spectra of poly atomic molecules & linear and symmetric top and asymmetric top molecules.	К5
CO4	Use these resonance spectroscopic techniques for quantitative and qualitative estimation of a substances and use their knowledge of Raman Spectroscopy as an important analytical tool.	K4
CO5	Learn the electronic transitions caused by absorption of radiation in the NMR & ESR region of the electromagnetic spectrum and be able to analyze a simple Resonance	K1, K5

spectrum.

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Core 9 - ELECTROMAGNETIC THEORY	II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH9	ELECTROMAGNETIC THEORY	Core				5	6	75

Pre-Requisites									
Knowledge of different coordinate systems, Laplace's equation, conducting & non-conducting									
medium, basic definitions in magnetism, propagation of electromagnetic waves, plasma									
Learning Objectives									

- To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- > To understand Biot Savart's law and Ampere's circuital law
- To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves
- > To grasp the concept of plasma as the fourth state of matter and wave guide,TM &TE modes.

UNITS	Course Details
UNIT I: ELECTROSTATICS	 Coloumb's law - The electric field - Line, flux and gauss law in differential form-The electrostatic potential –Conductors and insulators: Gauss's law and its applications - The curl of E- Poisson equation in three dimensions Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization and displacement vectors - Boundary conditions - Dielectric sphere in a uniform field
UNIT II: MAGNETOSTATICS	Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magneto static energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions - Uniformly magnetized sphere.
UNIT III: MAXWELL EQUATIONS	Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Conservation laws - Continuity equation - Poynting's theorem - Vector and scalar potentials - Lorentz force - Maxwell's equation in a matter – Maxwell's equation in free space, in linear isotropic media - Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges.
UNIT IV: WAVE PROPAGATION	 Plane waves in non-conducting media - Linear and circular polarization, Energy flux in a plane wave - Radiation pressure and momentum -Reflection and refraction at a plane interface - Waves in a conducting medium - Frequency dispersion characteristics of dielectrics. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole Simplified model of propagation in the ionosphere and magnetosphere - Waves in a dissipative medium.

UNIT V: WAVE GUIDE AND RADIATING SYSTEM	Propagation of waves between conducting planes - waves in Guides of Arbitrary cross-section: Group velocity. Propagation of electromagnetic waves in hollow metallic cylindrical and rectangular wave guides- TM and TE modes- Transmission lines - Resonant cavities - Magnetic dipole and electric dipole field - Center-field linear antenna.
UNIT VI: PROFESSIONAL COMPONENTS:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism.
TEXT BOOKS	 D. J. Griffiths, 2012, Introduction to Electrodynamics, 3rd Edition, Prentice-Hall of India, New Delhi. K. K. Chopra and G.C. Agarwal, Electromagnetic theory, K. Nath & Co. Meerut 2016 B.Chakraborty,principles of electro dynamics ,books and allied ,kolkatta, 2002 J.D. Jackson, Classical Electrodynamics (Wiley Eastern, 1999) Satya Prakash, Electromagnetic Theory and Electrodynamics (Kedar Nath Ram Nath,Meerut, 2015) B.B. Laud, Elctromagnetics (New Age International Publishers).
REFERENCE BOOKS	 John R. Reitz, Fredrick, J. Milford and Robert, W. Christy, Foundations of electromagnetic Theory,2012. Classical Electromagnetism – Jerrold Franklin, Dover Publications, Inc.,2nd Edition, 2017 J. D. Kraus and D. A. Fleisch, 1999, <i>Electromagnetics with</i> <i>Applications</i>, 5th Edition, WCB McGraw-Hill, New York. B. Chakraborty, 2002, <i>Principles of Electrodynamics</i>, Books and Allied, Kolkata. P. Feynman, R. B. Leighton and M. Sands, 1998, <i>The Feynman</i> <i>Lectures on Physics</i>, Vols. 2, Narosa Publishing House, New Delhi. Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University Press, USA.
WEB SOURCES	 http://www.plasma.uu.se/CED/Book/index.html http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html http://dmoz.org/Science/Physics/Electromagnetism/Courses_and_Tut orials/ https://www.cliffsnotes.com/study-guides/physics/electricity-and-magnetism/electrostatics

At the end of the course the student will be able to:

CO1	Solve the differential equations using Laplace equation and to find solutions for boundary value problems	K1, K5
CO2	Use Biot-Savart's law and Ampere circuital law to find the magnetic induction & magnetic vector potential for various physical problems	K2, K3

CO3	Apply Maxwell's equations to describe how electromagnetic field behaves in different media	К3				
CO4	Apply the concept of propagation of EM waves through wave guides in optical fiber communications and also in radar installations, calculate the transmission and reflection coefficients of electromagnetic waves	K3, K4				
CO5	Investigate the interaction of ionized gases with self-consistent electric and magnetic fields	K5				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPH9	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

23PPH9	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

Core 10 – MICROPROCESSOR,	II YEAR - THIRD SEMESTER
MICROCONTROLLER AND PYTHON	
LABORATORY	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH10P	MICROPROCESSOR , MICROCONTROLLER AND PYTHON LABORATORY	Core				4	6	75

Knowledge and handling of general and experiments of Physics, as well as fundamentals of digital

principles, python programming.

Learning Objectives

- To understand the theory and working of Microprocessor, Microcontroller and their applications
- > To use microprocessor and Microcontroller in different applications
- The aim and objective of the course on Computational Practical is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using any high level language such as mathematical skills.
- > To equip the computational skill using numerical methods using python programming.
- > To apply the software tools to explore the concepts of physical science.

Course Details

ANY 12 EXPERIMENTS (4 from each section)

MICROPROCESSOR

- 1. Addition, subtraction, multiplication and divison (8 bit)
- 2. 16 bit addition and 1's and two's complement subtraction(8 and 16 bit)
- 3. Conversion : Decimal to Octal and Decimal to hexadecimal
- 4. Searching for a number from a given list
- 5. Ascending and descending order
- 6. Stepper motor interface
- 7. Temperature measurement interface

MICROCONTROLLER

- 1. Addition, subtraction, multiplication and division
- 2. Fibonacci series
- 3. Factorial of a number
- 4. Square root of a number
- 5. Gray code to 8 bit binary number conversion
- 6. Ascending and descending order
- 7. Conversion : Decimal to Octal and Decimal to hexadecimal

PYTHON PROGRAMMING

- 1. Newton Raphson method
- 2. Simpson and Trapezoidal integration rules
- 3. Gauss Elimination method
- 4. Runge Kutta II and IV order methods
- 5. Newtons Forward and backward formulae
- 6. Bifurcation diagram of logistic map
- 7. Duffing Oscillator trajectory plot

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Develop the programming skills of Microprocessor	K5		
CO2	Appreciate the applications of Microprocessor programming	K3		
CO3	Understand the structure and working of 8085 microprocessor and apply it.	K1, K3		
CO4	Acquire knowledge about the interfacing peripherals with 8085 microprocessor and 8051 microcontroller with various peripherals.	K1, K4		
CO5	Acquire knowledge about the interfacing problem-solving aptitudes of students using various numerical methods and apply numerical methods to find out solution of algebraic equation using python programming under different conditions, and numerical solution of system of algebraic equation.	K1,K4		
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

MAPPING WITH PROGRAM OUTCOMES:

23PPH10P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	2	3	2
CO2	2	2	3	3	3	2	2	1	3	2
CO3	3	3	2	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	2	3	2
CO5	3	3	3	3	3	2	2	2	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
C01	2	2	2	3	3	2	2	2	3	2
CO2	2	2	3	3	3	2	2	2	3	2
CO3	3	3	2	3	3	2	2	2	3	2
CO4	3	3	3	3	3	2	2	2	3	2
CO5	3	3	3	3	3	2	2	2	3	2
Elective	e - 5. Pl	HYSICS	OF NAN	OSCIEN	CE	II Y	EAR – T	HIRD SH	EMESTE	R
AND T	ECHN	OLOGY								

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPHE5A	PHYSICS OF NANOSCIENCE AND TECHNOLOGY	Elective				3	3	75

Pre-Requisites
Basic knowledge in nanoscience& technology

Learning Objectives

- Physics of Nanoscience and Technology is concerned with the study, creation, manipulation and applications at nanometer scale.
- > To provide the basic knowledge about nanoscience and technology.
- > To provide knowledge of synthesis and fabrication of nanotechnology.
- > To learn the structures and properties of nanomaterials.
- To acquire the knowledge about synthesis methods and characterization techniques and its applications.

UNITS	Course Details
UNIT I: FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY	Fundamentals of NANO – Historical Perspective on Nanomaterial and Nanotechnology – Classification of Nanomaterials – Metal and Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials - Quantum dots – Quantum wires – Quantum wells - Surface effects of nanomaterials.
UNIT II: PROPERTIES OF NANOMATERIALS	Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant - Mechanical behavior:Elastic properties – strength - ductility - superplastic behavior - Optical properties: - Surface Plasmon Resonance – Quantum size effects - Electrical properties - Conductivity, Ferroelectrics and dielectrics - Magnetic properties – super para magnetism – Diluted magnetic semiconductor (DMS).
UNIT III: SYNTHESIS AND FABRICATION	Physical vapour deposition - Chemical vapour deposition - sol-gel – Wet deposition techniques - electrochemical deposition method – Plasma arching - Electrospinning method - ball milling technique - pulsed laser deposition - Nanolithography: photolithography – Nanomanipulator.
UNIT IV: CHARACTERIZATION TECHNIQUES	Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy – Photoluminescence - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM) – Vibrating sample Magnetometer.

	Sensors: Nanosensors based on optical and physical properties -						
	Electrochemical sensors - Nano-biosensors. Nano Electronics: Nanobots -						
UNIT V:	display screens - GMR read/write heads - Carbon Nanotube Emitters -						
APPLICATIONS OF	Photocatalytic application: Air purification, water purification -Medicine:						
NANOMATERIALS	Imaging of cancer cells - biological tags - drug delivery - photodynamic						
	therapy - Energy: fuel cells - rechargeable batteries - supercapacitors -						
	photovoltaics.						
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						

PROFESSIONAL	Interactions/Visits,	Competitive	Examinations,	Employable	and
COMPONENTS	Communication Skil	l Enhancement,	Social Accountal	bility and Patrio	tism

	1. A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata
	McGraw-Hill Publishing Co. (2012).
	2. Principles of Nanoscience and Nanotechnology, M.A. Shah, Tokeer
	Ahmad, Narosa Publishing House Pvt Ltd., (2010).
	3. Introduction to Nanoscience and Nanotechnology, K. K.
	Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New
TEXT BOOKS	Delhi, (2012).
	4. Nanostructured Materials and Nanotechnology, Hari Singh Nalwa,
	Academic Press, (2002).
	5. Nanotechnology and Nanoelectronics, D.P. Kothari,
	V. Velmurugan and Rajit Ram Singh, Narosa Publishing House
	Pvt.Ltd, New Delhi. (2018)
	1. Nanostructures and Nanomaterials – HuozhongGao – Imperial College
	Press (2004).
	2. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley
	Publishing Inc. USA
	3. Nano particles and Nano structured films; Preparation,
REFERENCE	Characterization and Applications, J.H.Fendler John Wiley and Sons.
BOOKS	(2007)
	4. Textbook of Nanoscience and Nanotechnology, B.S.Murty, et al.,
	Universities Press. (2012)
	5. The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology),
	Dr. Parag Diwan and Ashish Bharadwaj (2005) Vol. IV -
	Nanoelectronics Pentagon Press, New Delhi.
	1. www.its.caltec.edu/feyman/plenty.html
	2. http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm
WEB SOURCES	3. http://www.understandingnano.com
	4. http://www.nano.gov
	5. http://www.nanotechnology.com

At the end of the course, the student will be able to:

CO1	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	K1, K2
CO2	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.	K1
CO3	Understand the process and mechanism of synthesis and fabrication of nanomaterials.	K2, K3
CO4	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.	K4

CO5	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	К3			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPHE5A	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	3	3	3	3
CO2	3	3	3	2	2	2	3	3	3	3
CO3	3	3	2	2	2	2	3	3	3	3
CO4	3	3	3	2	2	2	3	3	3	3
CO5	3	3	2	2	2	2	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	3	3	3	3
CO2	3	3	3	2	2	2	3	3	3	3
CO3	3	3	2	2	2	2	3	3	3	3
CO4	3	3	3	2	2	2	3	3	3	3
CO5	3	3	2	2	1	2	3	3	3	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Elective 5 - NUMERICAL METHODS AND	II YEAR - THIRD SEMESTER
PYTHON PROGRAMMING	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPHE5B	NUMERICAL METHODS AND PYTHON PROGRAMMING	Elective				3		75

Pre-Requisites				
Basic knowledge in numerical methods and python programming.				
Learning Objectives				

- This advanced course on scientific computing using numerical methods and Python will focus on programming
- Facilitating comprehension of object-oriented programming through Fortran and python programming languages for simulating scientific problems.
- Understanding fundamentals of programming such as variables conditional and iterative execution, methods, etc.
- Enabling the handling of arrays and related operations for advanced problems and Improving scientific data plotting and analysis.
- > Providing a working knowledge of practical numerical methods.

UNITS	Course Details
UNIT I: NUMERICAL METHODS	Root finding: Newton Raphson method - System of equations: Gauss elimination - Curve fitting: Linear least squares approximation Interpolation: Lagrange and Newton - Numerical differentiation - Numerical Integration: Trapezoidal and Simpson's rules - Solving ODES: Euler and Runge-Kutta methods.
UNIT II: FORTRAN 95 BASICS	Syntax - Data types - Variables - Constants - Operators - Branches and Loops - Strings -Decisions - Basic Input/Output - File Operations.
UNIT III:	1D Arrays - Multi-dimensional Arrays - Intrinsic Array functions -
ADVANCED	Pointers - Subprogram - Functions - subroutines - Modules - Formatted
COMPUTING IN	Input/Output - Visualization with GNUplot - Parallel programming with
FORTRAN 95	Fortran - Basics - OpenMP, MPI and Coarray Fortran .
UNIT IV:	Python variables - Data types - Data structures: lists, dicts, tuples, sets,
PYTHON BASICS	strings - Loops - Functions - Methods - Objects - File handling.
UNIT V:	Basic Numpy : 2D Numpy Arrays - Pandas : Basic data manipulation -
PYTHON	Matplotlib: basic plotting - Plot types - Image functions - Axis functions -
LIBRARIES	Figure functions - 2D and 3D plots - Annotations and texts.

	Unit 1,2:
	1. Ed Jorgensen, Introduction to Programming using Fortran 95, 2003,
	2008, (Ed Jorgensen, 2018).
	2. A. Singaravelu, Numerical methods, Meenakshi Agency,
	Chennai(2008)
TEXT BOOKS	3. M.K.Venkataraman, Numerical method in Science and Engineering,
	The National Publishing Company, Chennai, (1999)
	4. T. Williams and C. Kelley, Gnuplot 5.0 An Interactive Plotting
	Program(Samurai Media limited, 2015).
	5. J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L.

	 Wagener, Fortran 90 Handbook (Multiscience press, New York, 1992). 6. R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon, Parallel Programming in openMP, (Morgan Kaufmann Publishers, San Francisco, 2001). 7. S. Ray, Fortran 2018 with Parallel Programming (CRC press, New York, 2019).
	1. E. Matthes, Python Crash Course, 2nd Edition (No Starch Press, San Francisco, 2019).
REFERENCE	2. W. McKinney, Python for Data Analysis (O'Reilly Media, Sebastopol, 2012) Unit 48-5
BOOKS	3. T. Sauer, Numerical Analysis, 2nd Edition (Pearson, San Francisco,
	2012).
	4. K. N. Anagnostopoulos, Computational Physics (National Technical
	University of Athens, Greece, 2014)
	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
WEB SOURCES	1. https://onlinecourses.nptel.ac.in/noc20_ma33/preview
	2. https://nptel.ac.in/course/103106074/
	3. https://nptel.ac.in/course/122106033/

At the end of the course, the student will be able to:

CO1	Recall the transcendental equations and analyze the different root finding							
	methods. Understand the basic concept involved in root finding procedure such as							
	Newton Raphson and Bisection methods, their limitations.							
CO2	Relate Simultaneous linear equations and their matrix representation Distinguish	K 5						
	between various methods in solving simultaneous linear equations.	K3						
CO3	Understand, how interpolation will be used in various realms of physics and							
	Apply to some simple problems Analyze the newton forward and backward	K2, K3						
	interpolation							
CO4	Recollect and apply methods in numerical differentiation and integration. Assess	V2 VA						
	the trapezoidal and Simson's method of numerical integration.	МЭ, М 4						
CO5	Understand the basics of C-programming and conditional statements.	K2						
K1 - Ren	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

23PPHE5B	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	3	2	2	3
CO2	3	2	3	2	2	2	3	2	2	3
CO3	3	2	3	2	2	2	3	2	2	3
CO4	3	2	3	2	2	2	3	2	2	3
CO5	3	2	3	2	2	2	3	2	2	3

23PPHE5B	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	2	2	2	3	2	2	3
CO2	3	2	3	2	2	2	3	2	2	3
CO3	3	2	3	2	2	2	3	2	2	3
CO4	3	2	3	2	2	2	3	2	2	3
CO5	3	2	3	2	2	2	3	2	2	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Skill Enhancement Course 2(Online objective)	II YEAR - THIRD SEMESTER
PHYSICS FOR COMPETITIVE EXAMINATION	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPHSE2	PHYSICS FOR COMPETITIVE EXAMINATION	Skill Enhancement				2	3	75

Pre-Requisites								
Knowledge of different coordinate systems, Mathematical physics, Lagrangian and Hamiltonian								
formalism, basic definitions in quantum mechanics, propagation of electromagnetic waves, Electronics								
Learning Objectives								

- > To acquire knowledge about special function applicable technique
- To understand classical mechanics and lagrangian and Hamiltonian formalism then physical ideas contained in Maxwell's equations
- > To comprehend the quantum mechanics.
- > To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves.
- \succ To understand the concept of electronics.

UNITS	Course Details
UNIT I: MATHEMATICAL PHYSICS	Special functions (Hermite, Bessel, Laguerre and Legendre functions). Fourier series, Fourier and Laplace transforms. Elements of complex analysis, analytic functions; Taylor & Laurent series; poles, residues and evaluation of integrals.
UNIT II: CLASSICAL MECHANICS	Two body Collisions - Scattering in laboratory and Centre of mass frames. Rigid body dynamics-Moment of inertia tensor. Non-inertial frames and Pseudo forces. Variational principle. Generalized coordinates. Lagrangian and Hamiltonian formalism and equations of motion. Conservation laws and cyclic coordinates. Periodic motion: Small oscillations, Normal modes.
UNIT III: QUANTUM MECHANICS	Spin-orbit coupling, Fine structure - WKB approximation. Elementary theory of scattering: phase shifts,partial waves, Born approximation. Relativistic quantum mechanics: Klein-Gordon and Dirac equations.Semi- classical theory of radiation
UNIT IV: ELECTROMAGNETIC THEORY	Magnetostatics: Biot-Savart law, Ampere's theorem. Electromagnetic induction. Maxwell'sequations in free space and linear isotropic media; Boundary conditions on the fields at interfaces. Scalar and vector potentials, Gauge invariance. Electromagnetic waves in free space. Dielectrics and conductors - Reflection and Refraction, Polarization, Fresnel's law, Interference, Coherence, and Diffraction.

	Semiconductor devices (Diodes, Junctions, Transistors, Field effect
UNII V:	devices, homo- and hetero-junction devices)-Opto-electronic devices
ELECTRONICS	(solar cells, Photo-detectors, LEDs) - Operational amplifiers and their
	applications - Digital techniques and applications (Registers, Counters,
	Comparators and similar circuits).

	1. Mathematical Physics, H.K.DASS, RAMA VERMA, Sultan
	Chand & Sons, New Delhi.(2010).
IEAT BOOKS	2. Classical Mechanics, J.C.Upadhya, Himalaya Publishing House,

	2012. & CSIR-UGC NET (JRF & LS) Physical Science
	3. P.M. Mathews and K. Venkatesan, A Text book of Quantum
	mechanics TMH. New Delhi, 6th edision, 2013.
	4 D I Griffiths 2012 Introduction to Electrodynamics
	3 rd Edition, Prentice-Hall of India, New Delhi.
	5. Principles of Electronics by V.K.Metha, Rohith Metha, S.Chand
	&Company,New Delhi 11 th edision(2015).
	1. Sathyaprakash, Mathematical Physics, Sultan Chand & Sons, New
	Delhi. 6th edition, 2012.
	2. N.C.Rana and P.S.Joag, Classical Mechanics, (Tata Mc-Graw Hill,
	New Delhi, 2001).
	3. G. K. Sharma, Classical Mechanics, (Pragati Prakashan, New
	Delhi, 2012).
REFERENCE	4. S. Rajasekar and R. Velusamy, Quantum Mechanics: The
BOOKS	Fundamentals (CRC Press, Boca Raton, 2015).
	5. K. K. Chopra and G.C. Agarwal, Electromagnetic theory, K. Nath
	& Co. Meerut 2016.
	6. B.B. Laud, Elctromagnetics (New Age International Publishers).
	7. Integrated Electronics by Jacob Milman and Christos Halkias,
	TMH 2^{nd} edision (2017).
	1.https://nptel.ac.in/course.html/Physics/Integrals and vector calculus
	2.https://nptel.ac.in/course.html/Physics/ Introduction to classical
WEB SOUDCES	mechanics
WED SOURCES	3.https://medium.com/predict/what-is-quantum-mechanics
	4.https://nptel.ac.in/courses/122/106/122106034/
	5. https://nptel.ac.in/course.html/electronics/operational amplifier

At the end of the course, the student will be able to:

CO1	Understand special functions and complex analysis for concepts & evaluation.	K2				
CO2	ain a working knowledge of Conservation laws and cyclic coordinates with $\mathbf{K1}$,					
	Rigid body dynamics and Generalized coordinates.					
CO3	Get an exposure to lagrangian and Hamiltonian formulism.	K1,K4				
CO4	Understand the instrumentation used for powder diffraction, data collection,	K) KA				
	data interpretation, and structure refinement using Rietveld method	К2, К4				
CO5	Get an insight into the structural aspects of proteins and nucleic acids,	V5				
	crystallization of proteins and methods to solve protein structures	N3				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

Online objective type	End Semester Examination	Total	Grade
100	100	100	

Core 11 - NUCLEAR AND PARTICLE PHYSICS	II YEAR - FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH11	NUCLEAR AND PARTICLE PHYSICS	Core				5	6	75

	Pre-Requisites
Knowledg	ge of basic structure of atom and nucleus.
	Learning Objectives
> In	troduces students to the different models of the nucleus in a chronological order
> In	nparts an in-depth knowledge on the nuclear force, experiments to study it and the types of
nu	clear reactions and their principles
E To	o acquire the knowledge of nuclear reactions nuclear reciprocity theorem

- To acquire the knowledge of nuclear reactions nuclear reciprocity theorem
 Provides students with details of nuclear decay with relevant theories
 Exposes students to the Standard Model of Elementary Particles and Higgs boson

UNITS	Course Details
UNIT I: NUCLEAR MODELS	Liquid drop model – Weizacker mass formula – Isobaric mass parabola – Mirror Pair - Bohr Wheeler theory of fission – Shell model – Spin-orbit coupling – Magic numbers – Angular momenta and parity of ground states – Magnetic moment – Schmidt model – Electric Quadrapole moment - Bohr and Mottelson collective model – Rotational and Vibrational bands.
UNIT II:	Nucleon – nucleon interaction – Tensor forces – Properties of nuclear forces
NUCLEAR	forces – Yukawa potential – Nucleon-nucleon scattering – Effective range
FORCES	theory – Spin dependence of nuclear forces - Charge independence and charge symmetry – Isospin formalism.
UNIT III:	Kinds of nuclear reactions - Reaction kinematics - Q-value - Partial wave
NUCLEAR REACTIONS	analysis of scattering and reaction cross section – Scattering length – Compound nuclear reactions – Reciprocity theorem – Resonances – Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – Four Factor Formula- Nuclear Reactors.
UNIT IV:	Alpha decay - Gamow's theory - Beta decay - G– Continuous Beta spectrum – Fermi theory of beta decay - Comparative Half-life –Fermi Kurie Plot –
NUCLEAR	mass of neutrino – Allowed and forbidden decay – Neutrino physics –
DECAY	Helicity - Parity violation - Gamma decay – Multipole radiations – Angular Correlation - Internal conversion – Nuclear isomerism – Angular momentum and parity selection rules.

UNIT V:	Classification of Elementary Particles – Types of Interaction and conservation										
	laws - CPT Theorem - CP Violation - Families of elementary particles -										
ELEMENTARY	Isospin – Quantum Numbers – Strangeness – Hypercharge and Quarks –SU										
PARTICLES	2) and SU (3) groups-Gell Mann matrices- Gell Mann Okuba Mass formula-										
	Quark Model – Standard model of particle physics – Higgs boson.										
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial										
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and										
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism										
	1. D. C. Tayal – Nuclear Physics – Himalaya Publishing House (2011)										
	2. K. S. Krane – Introductory Nuclear Physics – John Wiley & Sons (2008)										
	3. S. B. Patel – Nuclear Physics – An introduction – New Age International										
	Pvt Ltd Publishers (2011)										
IEAI BOOKS	4. H.S.Hans, Nuclear Physics: Experimental and Theoretical, New Age intel,										
	NewDelhi, 2001.										
	5. A.Beiser, Concepts of Mordern Physics, 5th Ed. (McGraw-Hill, 1995)										
DEEDENICE	1. S.N. Ghoshal, Nuclear Physics (S. Chand & Company, New Delhi,										
REFERENCE	2006)										
BOOK2	2. Bernard L Cohen - Concepts of Nuclear Physics - McGraw Hill										

	Education (India) Private Limited; 1 edition (2001)
	3. M. L. Pandya & R.P.S. Yadav Elements of Nuclear Physics 7 th
	edition,Kedar Nath Ram Nath Delhi,1995
	4. D.Griffths, Introduction to Elementary Particle Physics, Wiley Intel,
	Edition, New York, 1987.
	1. http://bubl.ac.uk/link/n/nuclearphysics.html
	2. http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdfhtt
	p://www.scholarpedia.org/article/Nuclear_Forces
WER SOURCES	3. https://www.nuclear-power.net/nuclear-power/nuclear-reactions/
WED SOURCES	4. http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_mode ls.html
	 https://www.ndeed.org/EducationResources/HighSchool/Radiograph y/radioactivedecay.html

At the end of the course, the student will be able to:

CO1	Gain knowledge about the concepts of helicity, parity, angular correlation and	K1. K5					
	internal conversion.	,					
CO2	Demonstrate knowledge of fundamental aspects of the structure of the nucleus,	K 2 K3					
	radioactive decay, nuclear reactions and the interaction of radiation and matter.	112, 113					
CO3	Use the different nuclear models to explain different nuclear phenomena and the	K3					
	concept of resonances through Briet-Weigner single level formula	KJ					
CO4	Analyze data from nuclear scattering experiments to identify different properties of	K2 K4					
	the nuclear force.	Л Э, Л 4					
CO5	Summarize and identify allowed and forbidden nuclear reactions based on	K5					
	conservation laws of the elementary particles.	KJ					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3

CO5	3	3	2	3	2	3	2	3	3	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Core 12 - CONDENSED MATTER PHYSICS	II YEAR - FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH12	CONDENSED MATTER PHYSICS	Core				5	6	75

Pre-Requisites

Fundamentals of crystal structures, lattice dynamics and semiconductor/superconductor.

Learning Objectives

- > To teach the concept of crystal structures and symmetry, and diffraction theory
- To provide students with a background to lattice dynamics, Debye's theory and experimental diffraction from single crystals
- To provide instruction on the methods and basis for determining low-molecular weight crystal structures using metals and semiconductors.
- > To give the students a background to the instrumentation used magnetism.
- > To teach the theoretical explanation of structure exhibited by using superconductors.

UNITS	Course Details
UNIT I: CRYSTAL PHYSICS	Types of lattices - Miller indices - Symmetry elements and allowed rotations - Simple crystal structures - Atomic Packing Factor- Crystal diffraction - Bragg's law - Scattered Wave Amplitude - Reciprocal Lattice (SC, BCC, FCC). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).
UNIT II: LATTICE DYNAMICS	Lattice with two atoms per primitive cell - First Brillouin zone - Group and phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat capacity - Thermal Conductivity - Umkalapp processes.
UNIT III: THEORY OF METALS AND SEMICONDUCTORS	Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-Franz law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration – Temperature Dependence - Mobility - Impurity conductivity – Impurity states - Hall effect - Fermi surfaces and construction - Experimental methods in Fermi surface studies - de Hass- van Alphen effect .
UNIT IV: MAGNETISM	Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of antiferomagnetism - Neel temperature.
UNIT V: SUPER CONDUCTIVITY	 Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect – Critical field – Critical current - Entropy and heat capacity - Energy gap - Microwave and infrared properties - Type I and II Superconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length – Isotope effect - Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory – BCS to Bose – Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. C. Kittel, Introduction to Solid State Physics, 7th Edition, Wiley
	Eastern, New Delhi, 2006.
	2. S. O. Pillai, Solid State Physics, Seventh Edition, New Age
	International, New Delhi, 2014.
TEXT BOOKS	3. J.P. Srivastava : Elements of Solid State Physics, Prentice-Hall of
	India, 2006.
	4. A.J. Dekker, Solid State Physics, Published by Macmillan India
	(2000).
	5. J. R. Christman : Fundamentals of Solid State Physics, John Wiley
	& Sons, NY, 1988.
	1 I.S. Blakemore Solid State Physics Second Edition Cambridge
	University Press CambridgeLondon 1985
REFERENCE	2 H P Myers 1998 Introductory SolidState Physics 2 nd Edition
BOOKS	Viva Book. New Delhi.
	3. H. M. Rosenburg, 1993, <i>The SolidState</i> , 3 rd Edition,
	OxfordUniversity Press, Oxford.
	1. https://www.nationalgeographic.org/encyclopedia/magnetism
WEB SOURCES	2. https://www.brainkart.com/article/Super-Conductors_6824
	2 http://www.ommp.uol.oo.uk/0/7Eonh/Toophing/2C25/indox.html
	5.http://www.chimp.uci.ac.uk/%/Eapii/Teaching/5C25/Index.html

At the end of the course, the student will be able to:

CO1	Understand crystal symmetry and reciprocal lattice concept for X-ray diffraction	K2				
CO2	Gain a working knowledge of X-ray generation, X-ray photography with Laue, oscillation and moving film methods, and space group determination					
CO3	Get an exposure to crystal structure determination using program packages	K1,K4				
CO4	Understand the instrumentation used for powder diffraction, data collection, data interpretation, and structure refinement using Rietveld method	K2, K4				
CO5	Get an insight into the structural aspects of proteins and nucleic acids, crystallization of proteins and methods to solve protein structures	К5				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

23PPH12	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2

CO5 3 2	CO5
---	-----

23PPH12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

CORE 13. PROJECT WITH VIVA-VOCE	II YEAR - FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPH3PW	PROJECT WITH VIVA-VOCE	Core				7	10	75

Pre-Requisites					
Gain develop abilities and skills that encourage research and development activities and future research.					
Learning Objectives					

- To acquire knowledge of understanding and competencies required by practicing teachers for effective teaching-learning process at the secondary stage.
- Sustained in depth study on a specific topic to enable the students to critically examine the background literature relevant to their the background literature relevant to their specific research area.
- An environment that encourages the students originally and creativity in their research and opportunity to develop skills in making and testing hypotheses in developing new theories and in planning and conducting experiments, developing practical research skills and learn new stage of the art techniques.

- The opportunity to expand the student's knowledge of their research area, including its theoretical foundation and the specific techniques used to study it.
- An environment in which to develop skills in written work, oral presentation and publishing the results of their research scientific journals for future development and the students in acquiring basic knowledge in the specialized thrust areas such as Material science and Nanoscience, Theoretical physics, Crystal growth, Thin films in various fields of branch of physics.

PROJECT WITH VIVA-VOCE

Each candidate shall be required to take up a research project under the supervision of the qualified teachers in the department. The Head of the Department shall assign the Guide who, in turn, will suggest the Project Work to the student in the beginning of the final year.

At the end of fourth semester student should submit project report on or before the date fixed by the University. The Project will be evaluated by the project Guide as an internal examiner and an external examiner nominated by the University.

The viva – voce examination will be conducted to assess the knowledge of the candidate and the results of the title of the project. The candidate concerned will have to defend his/her Project through a Viva-voce.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

r		
CO1	Have some research experience within a specific field of physics, through a	K)
	supervised project (Master dissertation).	N2
CO2	Have a thorough knowledge of literature and a understanding of scientific	
	methods and techniques applicable in their field of research.	K2,K3
CO3	Be able to summarize major themes and current research problems in their area of	
	specialization and be able to explain and identify open problems and areas	K2,K4
	needing development in their fields.	
CO4	Be able to demonstrate originality in the application of knowledge, together with	
	a practical understanding of how research and enquiry are a used to create and	K2. K4
	interpret knowledge in their fields.	
CO5	Able to act independently in the planning and implementation of research and	KA
	have carried out and presented an original work of research in their discipline.	N 4
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

23PPH3PW	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	3	2	2	2
CO2	3	3	3	2	2	2	3	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2

CO5	3	2	2	2	2	2	2	2	2	2

23PPH3PW	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	2	3	2	2	2
CO2	3	3	3	2	2	2	3	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

ASSESSMENT /EVALUATION /VIVA-VOCE:

- I. ASSESSMENT OF THE PROJECT (Internal):
- a) Plan of the project submission : 20 Marks
- b) Individual Initiative : 05 Marks

Total: 25 Marks

II.DISTRIBUTION OF MARKS:

- a) Plan of the project :10 Marks
- b) Evaluation of the Project report : 45 Marks
- c) Assessment of the Project (CIA) : 25 Marks
- d) Viva voce examination : 20 Marks
 - Total: 100Marks

III. VIVA VOCE EXAMINATION (Internal and External) :

Preparation, Presentation of work and response to questions : 20 Marks

Flective -6 ENERGY PHYSICS	II VEAR - FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
23PPHE6A	ENERGY PHYSICS	Elective				3	4	75

Pre-Requisites

Knowledge of conventional energy resources

Learning Objectives

- > To learn about various renewable energy sources.
- > To know the ways of effectively utilizing the oceanic energy.
- > To study the method of harnessing wind energy and its advantages.
- > To learn the techniques useful for the conversion of biomass into useful energy.
- > To know about utilization of solar energy.

UNITS

Course Details

UNIT I: INTRODUCTION TO ENERGY SOURCES	Conventional and non-conventional energy sources and their availability– prospects of Renewable energy sources– Energy from other sources–chemical energy–Nuclear energy– Energy storage and distribution.
UNIT II: ENERGY FROM THE OCEANS	Energy utilization–Energy from tides–Basic principle of tidal power– utilization of tidal energy – Principle of ocean thermal energy conversion systems.
UNIT III: WIND ENERGY SOURCES	Basic principles of wind energy conversion-power in the wind-forces in the Blades- Wind energy conversion-Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage-Applications of wind energy.
UNIT IV: ENERGY FROM BIOMASS	Biomass conversion Technologies– wet and dry process– Photosynthesis - Biogas Generation: Introduction–basic process: Aerobic and anaerobic digestion – Advantages of anaerobic digestion–factors affecting bio digestion and generation of gas- bio gas from waste fuel– properties of biogas- utilization of biogas.
UNIT V: SOLAR ENERGY SOURCES	Solar radiation and its measurements-solar cells: Solar cells for direct conversion of solar energy to electric powers-solar cell parameter- solar cell electrical characteristics- Efficiency-solar water Heater - solar distillation- solar cooking-solar greenhouse - Solar pond and its applications.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. G.D. Rai, 1995, Solar energy Utilization, 5th edition, Khanna publishers,
	New Delhi.
	2. Solar Energy : Fundamentals, Design, Modelling and Application
	(Revised edition)January 2012 by Tiwari G N.
TEXT	3. Solar energy, principles of thermal collection and storage by
BOOKS	S.P.Sukhatme, 2 nd edition, Tata McGraw-Hill Publishing co.Ltd.
	4. Maheshwar Sharon, Madhuri Sharon, Carbon - Nano forms and
	Applications ^{II} , McGrawHill, 2010.
	5. Soteris A. Kalogirou, Solar Energy Engineering: Processes and
	Systems", Academic Press, London, 2009.
	1. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company
	Ltd., New Delhi, 1997.
REFERENCE	2. John W. Twidell & Anthony D.Weir, Renewable Energy Resources, 2005
BOOKS	3. John A. Duffie, William A. Beckman, Solar Energy: Thermal
	Processes,4th Edition,John Wiley and Sons, 2013.

	1.https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&p
WEB SOURCES	rintable=1
	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
	3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
	4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
	5. https://www.acciona.com/renewable-energy/solar-energy/

At the end of the course, the student will be able to:

CO1	To identify various forms of renewable and non-renewable energy sources	K1				
CO2	Understand the principle of utilizing the oceanic energy and apply it for practical	K2				
	applications.					
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	К3				
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K3,K4				
CO5	Understand the components of solar radiation, their measurement and apply them to utilize solar energy.	K2,K5				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPHE6A	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

23PPHE6A	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Elective – 6 MEDICAL PHYSICS	II YEAR – FOURTH SEMESTER

Subject Code	Subject Name	Category	Γ	Т	Р	Credits	Inst. Hours	Marks
23PPHE6B	MEDICAL PHYSICS	Elective				3	4	75

Pre-Requisites

Fundamentals of physiological concepts, Basics of instruments principle,

Learning Objectives

- > To understand the major applications of Physics to Medicine
- To study the aid of different medical devices such as X-ray machines, gamma camera, accelerator and nuclear magnetic resonance.
- To outline the principles of Physics of different medical radiation devices and their modern advances, especially in medical radiation therapy and different applications in medical physics.
- > To introduce the ideas of Radiography.
- > To form a good base for further studies like research.

UNITS

CourseDetails

UNIT I: X-RAYS AND TRANSDUCERS	Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum – Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X- Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells –Photoconductive cells– piezoelectric transducer
UNIT II: BLOOD PRESSURE MEASUREMENTS	Introduction – sphygmomanometer – Measurement of heart rate – Electrodes - basic principles of electrocardiogram (ECG) –Basic principles of electro- neurography (ENG) – EMG - EEG
UNIT III: RADIATION PHYSICS	Radiation Units – Exposure – Absorbed Dose – Red to Gray – Kera Relative Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors –Thimble Chamber – Condenser Chambers – Geiger Counter – Scintillation Counter
UNIT IV: MEDICAL IMAGING PHYSICS	Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray Film – Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display – Mammography – Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)

UNITV:	Principles of Radiation Protection – Protective Materials – Radiation Effects –							
RADIATION	Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring							
PROTECTION	Devices – TLD Film Badge – Pocket Dosimeter							
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,							
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill							
COMPONENTS	Enhancement, Social Accountability and Patriotism							
	1. Dr.K.Thayalan , Basic Radiological Physics, Jayapee Brothers Medical							
	Publishing Pvt. Ltd. New Delhi, 2003.							
	2. R.S. Khandpur, Hand Book of Biomedical Instrumentations,1st ed							
	TMG,New Delhi 2005.							
τεντ βροκς	3. FM Khan, Physics of Radiation Therapy, William and Wilkins, 3rd ed,							
IEAI DUURS	2003.							
	4. D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed,							
	Elsevier Science, 2014.							
	5. Curry, Dowdey and Murry, Christensen's Physics of Diagnostic Radiology							
	-LippincotWilliams and Wilkins, 1990.							
	1. Muhammad Maqbool, An Introduction to Medical Physics, 1st ed,							
	Springer International Publishing, 2017.							
	2. Daniel Jirák, FrantišekVítek, Basics of Medical Physics, 1st ed, Charles							
	University, Karolinum Press, 2018							
REFERENCE	3. Anders Brahme, Comprehensive Biomedical Physics, Volume 1, 1st ed,							
BOOKS	Elsevier Science, 2014.							
	4. K. Venkata Ram, Bio-Medical Electronics and Instrumentation, 1st ed,							
	Galgotia Publications, New Delhi, 2001.							
	5. John R. Cameron and James G. Skofronick, 2009, Medical Physics, John							
	Wiley Interscience Publication, Canada, 2nd edition.							

	1.	https:nptel.ac.in/courses/108/103/108103157/
	2.	https://www.studocu.com/en/course/university-of-technology-
		sydney/medical-devices-and-diagnostics/225692
WEB SOURCES	3.	https://www.technicalsymposium.com/alllecturenotes_biomed.html
	4.	https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation-
		bi-by-deepraj-adhikary/78
	5.	https://www.modulight.com/applications-medical/

At the end of the course, the student will be able to:

CO1	Learn the fundamentals, production and applications of X-rays.	K1
CO2	Understand the basics of blood pressure measurements. Learn about	K)
02	sphygmomanometer, EGC, ENG and basic principles of MRI.	11.2
CO3	Apply knowledge on Radiation Physics	K3
CO4	Analyze Radiological imaging and filters	K4
CO5	Assess the principles of radiation protection	K5
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

23PPHE6B	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

23PPHE6B	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

Continuous Internal Assessment	End Semester Examination	Total	Grade
--------------------------------	-----------------------------	-------	-------
25	75	100	
----	----	-----	--

Skill Enhancement Course 3	II YEAR – FOURTH SEMESTER
ELECTRONICS AND COMMUNICATION	
SYSTEMS	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks	
23PPHSE3	ELECTRONICS AND COMMUNICATION SYSTEMS	Skill Enhancement				2	4	75	

Pre-Requisites

Knowledge of Regions of electromagnetic spectrum and its characteristics

- To comprehend the transmission of electromagnetic waves thorough different types of antenna and also to acquire knowledge about the propagation of waves through earth's atmosphere and along the surface of the earth
- To gain knowledge in the generation and propagation of microwaves
- To acquire knowledge about radar systems and its applications and also the working principle of colour television
- To learn the working principle of fiber optics and its use in telecommunication
- To understand the general theory and operation of satellite communication systems

UNITS	Course Details
UNIT I:	UJT - VI characteristics - Relaxation Oscillators - JFET Characteristics - DC load line -Characteristics and application - SCR- DIAC - TRIAC.
SEMICONDUCTOR DEVICES AND LINEAR INTEGRATED CIRCUITS	Operational amplifiers - DC Characteristics - Basic OP-AMP Application - Instrumentation Amplifier - Digital to analog conversion using op-amps - Binary weighted resistor method - R-2R ladder method - Analog to digital conversion - Successive approximation method and counter methods - IC 555 timer - Multivibrators with 555 : Astable and Monostable mutivibrator.
UNIT II: ANTENNAS AND MICROWAVES	Terms and definition - Effect of ground on Antenna - Grounded $\lambda/4$ - Ungrounded antenna - λ antenna - Antenna arrays - Broadside and end side arrays - Directional high frequency antenna - Sky wave propagation - Ionosphere - Eccles & Larmor theory - Thin linear antenna - Non resonant antenna - Loop antenna - Power gain - Dipole arrayed VHF, UHF and Microwave antennas - Microwave generation and application - Klystron - Magnetron - Traveling wave tubes - Microwave propagation through wave guides - Detection and ranging - Transmitters and receivers - MASER - Gunn diode.
UNIT III: COMMUNICATION SYSTEM	Introduction - Analog and digital signals - Modulation - Modulation index - AM Modulation - Frequency spectrum of the AM wave - Representation of AM - Power Relation in the AM wave - AM Transmitter - FM Modulation - Mathematical representation of FM - Frequency spectrum of FM wave - Pulse modulation - Sampling theorem - pulse position modulation(PPM) - Pulse code modulation(PCM) - Pulse width modulation (PWM) - Effects of noise on carrier.
UNIT IV: OPTIC FIBER COMMUNICATION	Introduction of Optic fiber communication - Propagation within a fiber - Step index and graded index fibre - Modes of fibers - Fabrication fibers - Losses in fibers - Dispersion - Light sources for fiber optics - Photo detectors - Optic fiber communication systems - Fibre as a cylindrical wave guide.
UNIT V: COLOR TELEVISION	Essential of color television - Perception - Three color theory - Luminescence - Hue saturation - TV Camera - VIDICON - Luminescence signal - CRT-LCD-LED Displays - Single transmission - Modulation of color different signals - PAL of color TV systems - PAL color receiver - Block diagram - Merits and Demerits.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. D. Choudhury Roy, Jain, Shail B, Linear Integrated Circuits, (New
	Age International(P)Ltd. 2018.
	2. R.R Gulathi, Monochrome and color television, Wily Eastern New
TEXT BOOKS	Delhi (1995).
	3. Dennis Roddy & John Coolen, Electronic Communication, 4th
	edition Pearson education.(1995)
	1. George Kennedi, Electronic communication system. 4th edition,
	(Prentice-Hall of India.2004.
	Private Limited, New Delhi, 1999).
REFERENCE	2. H. S. Kalsi, Electronic Instrumentation, Tata McGraw-Hill, New
BOOKS	Delhi, 2004.
	3. Optical fibre and fibre optic communication systems - SK Sarkar -
	S. Chand Publication 2007 edition.
	1. https://nptel.ac.in/courses/115/107/115107095/
WEB SOURCES	2. https://www.youtube.com/playlist?list=PLq-
	Gm0yRYwTgr7v3Hhdr1_Kcc38369fw

At the end of the course, the student will be able to:

CO1	Discuss and compare the propagation of electromagnetic waves through sky and		
	on earth's surface Evaluate the energy and power radiated by the different types of	K1,]	K5
	antenna		
CO2	Compare and differentiate the methods of generation of microwaves analyze the		
	propagation of microwaves through wave guides- discuss and compare the	K4	
	different methods of generation of microwaves		
CO3	Classify and compare the working of different radar systems- apply the principle		
	of radar in detecting locating, tracking, and recognizing objects of various kinds at	V2	W2
	considerable distances – discuss the importance of radar in military- elaborate and	КJ	
	compare the working of different picture tube		
CO4	Classify, discuss and compare the different types of optical fiber and also to	V1	V2
	justify the need of it-discover the use of optical fiber as wave guide	мι,	КJ
CO5	Explain the importance of satellite communication in our daily life-distinguish		
	between orbital and geostationary satellites elaborate the linking of satellites with	K4	
	ground station on the earth		
K1 - Rei	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;		

MAPPING WITH PROGRAM OUTCOMES:

23PPHSE3	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10

CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

23PPHSE3	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

ELECTIVE OPTIONAL PAPERS

Elective - List 2.2	ADVANCED OPTICS	I YEAR – FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ADVANCED OPTICS	Elective						

Pre-Requisites
Knowledge of ray properties and wave nature of light
Learning Objectives
> To know the concepts behind polarization and could pursue research work on application
aspects of laser
> To impart an extensive understanding of fiber and non-linear optics
To study the working of different types of LASERS
To differentiate first and second harmonic generation
Learn the principles of magneto-optic and electro-optic effects and its applications

UNITS	Course Details
UNIT 1: POLARIZATION AND DOUBLE REFRACTION	Classification of polarization – Transverse character of light waves – Polarizer and analyzer – Malu's law – Production of polarized light – Wire grid polarizer and the polaroid – Polarization by reflection – Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence – Interference of polarized light: Quarter and half wave plates – Analysis of polarized light – Optical activity
UNIT II: LASERS	Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser – CO ₂ laser – Chemical lasers – HCl laser – Semiconductor laser
UNIT III: FIBER OPTICS	Introduction – Total internal reflection – The optical fiber – Glass fibers – The coherent bundle – The numerical aperture – Attenuation in optical fibers – Single and multi-mode fibers – Pulse dispersion in multimode optical fibers – Ray dispersion in multimode step index fibers – Parabolic-index fibers – Fiber-optic sensors: precision displacement sensor – Precision vibration sensor
UNIT IV: NON-LINEAR OPTICS	Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light

UNIT V: MAGNETO- OPTICS AND ELECTRO- OPTICS	Magneto-optical effects – Zeeman effect – Inverse Zeeman effect – Faraday effect – Voigt effect – Cotton-mouton effect – Kerr magneto-optic effect – Electro-optical effects – Stark effect – Inverse stark effect – Electric double refraction – Kerr electro-optic effect – Pockels electro-optic effect					
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial					
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and					
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism					
TEXT BOOKS	 B. B. Laud, 2017, Lasers and Non – Linear Optics, 3rd Edition, New Age International (P) Ltd. AjoyGhatak, 2017, Optics, 6th Edition, McGraw – Hill Education Pvt. Ltd. William T. Silfvast, 1996, Laser Fundamentals Cambridge University Press, New York J. Peatros, Physics of Light and Optics, a good (and free!) electronic book B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-Interscience, 					
REFERENCE	1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4 th					

BOOKS	Edition), McGraw – Hill International Edition.
	2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley – VCH, Varley
	GmbH.
	3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 th Edition,
	Cambridge University Press, New Delhi, 2011.
	4. Y. B. Band, Light and Matter, Wiley and Sons (2006)
	5. R. Guenther, Modern Optics, Wiley and Sons (1990)
	1. https://www.youtube.com/watch?v=WgzynezPiyc
	2. https://www.youtube.com/watch?v=ShQWwobpW60
WED SOUDCES	3. https://www.ukessays.com/essays/physics/fiber-optics-and-it-
WEB SOURCES	applications.php
	4. https://www.youtube.com/watch?v=0kEvr4DKGRI
	5. http://optics.byu.edu/textbook.aspx

At the end of the course, the student will be able to:

C01	Discuss the transverse character of light waves and different polarization	17.1			
	phenomenon	KI			
CO2	Discriminate all the fundamental processes involved in laser devices and to	V)			
	analyze the design and operation of the devices	KZ			
CO3	Demonstrate the basic configuration of a fiber optic – communication system and	VO VA			
	advantages	кз, к4			
CO4	Identify the properties of nonlinear interactions of light and matter	K4			
CO5	Interpret the group of experiments which depend for their action on an applied	V.F			
	magnetics and electric field	N2			
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	3
C02	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3

CO5	3	3	3	3	3	3	3	3	3	3

Elective - List 2.3	PLASMA PHYSICS	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PLASMA PHYSICS	Elective						

Pre-Requisites

Fundamentals of Electricity and Magnetism, Electromagnetic theory, Maxwell's equation, Basic knowledge of electrical and electronics instrumentation.

- > To explore the plasma universe by means of in-site and ground-based observations.
- > To understand the model plasma phenomena in the universe.
- > To explore the physical processes which occur in the space environment.

UNITS	Course Details
UNIT I: FUNDAMENTAL CONCEPTS OF PLASMA	Kinetic pressure in a partially ionized - mean free path and collision cross section - Mobility of charged particles - Effect of magnetic field on the mobility of ions and electrons-Thermal conductivity- Effect of magnetic field- Quasi- neutrality of plasma Debye shielding distance - Optical properties of plasma.

UNIT II: MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELD	Particle description of plasma- Motion of charged particle in electrostatic field- Motion of charged particle in uniform magnetic field - Motion of charged particle in electric and magnetic fields- Motion of charged particle inhomogeneous magnetic field - Motion of charged particle in magnetic mirror confinement - motion of an electron in a time varying electric field-Magneto- hydrodynamics - Magneto-hydrodynamic equations – Condition for magneto hydrodynamic behaviour.						
UNIT III: PLASMA OSCILLATIONS AND WAVES	Introduction, theory of simple oscillations - electron oscillation in a plasma – Derivations of plasma oscillations by using Maxwell's equation - Ion oscillation and waves in a magnetic field - thermal effects on plasma oscillations - Landau damping - Hydro magnetic waves - Oscillations in an electron beam.						
UNIT IV: PLASMA DIAGNOSTICS TECHNIQUES	Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic methodlaser as a tool for plasma diagnostics-X-ray diagnostics of plasma - acoustic method - conclusion.						
UNIT V: APPLICATIONS OF PLASMA PHYSICS	Magneto hydrodynamic Generator - Basic theory - Principle of Working- Fuel in MHD Generator - Generation of Microwaves Utilizing High Density Plasma - Plasma Diode.						
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism						

	1. Plasma Physics- Plasma State of Matter - S. N.Sen,						
	PragatiPrakashan, Meerut.						
	2. Introduction to Plasma Physics-M. Uman						
	3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics.						
	Berkeley, CA: San Francisco Press, 1986. ISBN:						
ΤΕΥΤ ΒΟΟΙΟ	9780911302585.Tanenbaum, B. S. Plasma Physics. New York, NY:						
IEAI BOOKS	McGraw-Hill, 1967. ISBN: 9780070628120.						
	4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma Physics.						
	Philadelphia, PA: IOP Publishing, 1995. ISBN: 9780750301831.						
	5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK:						
	Cambridge University Press, 2005. ISBN: 9780521675741.						
	1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY:						
	Springer, 1984. ISBN: 9780306413322.						
REFERENCE BOOKS	2. Introduction to Plasma Theory-D.R. Nicholson						
	3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc.,						
	1971. ISBN: 9780126405507.						
	4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma						

	Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.
	5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic Techniques.
	San Diego, CA: Academic Press, 1965
	1. https://fusedweb.llnl.gov/Glossary/glossary.html
	2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html
WEB SOURCES	3. http://www.plasmas.org/
	4. http://www.phy6.org/Education/whplasma.html
	5. http://www.plasmas.org/resources.htm

At the end of the course, the student will be able to:

CO1	Understand the collision, cross section of charged particles and to able to correlate	V1	K)
	the magnetic effect of ion and electrons in plasma state.	МΙ,	R2
CO2	Understand the plasma and learn the magneto-hydrodynamics concepts applied to	K)	
	plasma.	IX 2	
CO3	Explore the oscillations and waves of charged particles and thereby apply the	V1	K3
	Maxwell's equation to quantitative analysis of plasma.	м,	Ŋ
CO4	Analyze the different principle and techniques to diagnostics of plasma.	K2,	K5
CO5	Learn the possible applications of plasma by incorporating various electrical and	K/	
	electronic instruments.	N4	
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;		

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

Elective - List 2.4	BIO PHYSICS	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	BIO PHYSICS	Elective						

Pre-Requisites
Fundamental concepts of Physics and Biology
Learning Objectives

- > To understand the physical principles involved in cell function maintenance.
- To understand the fundamentals of macromolecular structures involved in propagation of life.
- > To understand the biophysical function of membrane and neuron.
- To understand various kinds of radiation and their effects on living system and to know the hazards posed by such radiations and the required precautions.
- To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

UNITS	Course Details
UNIT I: CELLULAR	Architecture and Life Cycle of cells – Organelles of Prokaryotic and Eukaryotic cell – Cell size and shape – Fine structure of Prokaryotic and Eukaryotic cell organization – Compartment & assemblies membrane system – Extracellular

BIOPHYSICS	matrix - Molecular mechanisms of Vesicular traffic - Electrical activities of
	cardiac and neuronal cells.
	Maanamalaanlaa atmatuma. Duotoin atmatuma amina aaida nantida handa
	Macromolecular structure: Protein structure – amino acids, peptide bonds,
	primary, secondary, tertiary and quaternary structures of proteins
UNIT II:	Nucleic acid structure: nucleosides and nucleotides. RNA structure. DNA
MOLECULAR	structure and conformation.
BIOPHYSICS	
	Special Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes,
	chaperons and prions.
	Models membranes Pielogical membranes and dynamics Membrane
UNIT III:	Canagitars Transport agross call and organalla membranes. Ion channels
MEMBRANE	Capacitors – Transport across cen and organene memoranes – fon channels.
	Nervous system: Organization of the nervous system –Membrane potential –
AND NEURO	Origins of membrane potential - Electrochemical potentials – Nernst equation –
BIOPHYISCS	Goldman equation.
UNIT IV:	X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular effects
RADIATION	of gamma radiation, Radiation effects on nucleic acids and membranes, Effects
BIO PHYSICS	on cell and organelles – UV radiation: Effects on bio-macromolecules and
	proteins – Radiation hazards and protection – use of radiations in cancer.

	pectroscopy: UV-Visible absorption spectrophotometry – Optical Rotatory								
UNIT V:	Dispersion (ORD) – Structure Determination: X-ray Crystallography,								
PHYSICAL	lectron spin resonance (ESR) and biological applications. Chromatography:								
METHODS IN	Thin layer chromatography (TLC), Gas liquid chromatography (GLC) -								
BIOLOGY	Centrifugation: Differential centrifugation, density gradient centrifugation.								
	Electrophoresis: Gel electrophoresis, polyacrylamide gel electrophoresis.								
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial								
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and								
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism								

	1. The cell: A molecular approach, Geoffrey M. Cooper, ASM Press, 2013.
	2. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009
TEXT	3. Biophysics, P. S. Mishra VK Enterprises, 2010.
BOOKS	4. Biophysics, M. A Subramanian, MJP Publishers, 2005.
	5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.
REFERENCE	1. Chemical Biophysics by Daniel A Beard (Cambridge University Press,
	2008).
BOOKS	2. Essential cell biology by Bruce Albert et al (Garland Science)
	3. Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler. Springer
	Verlag, Berlin (1983).

	4. Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A. Tuszynski,
	(Springer science & business media).
	5. Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek
	1. General Bio:http://www.biology.arizona.edu/DEFAULT.html
WEB	2. Spectroscopy: http://www.cis.rit.edu/htbooks/nmr/inside.htm
SOUDCES	3. Electrophoresis:http://learn.genetics.utah.edu/content/labs/gel/
SUURCES	4. Online biophysics programs: http://mw.concord.org/modeler/
	5. https://blanco.biomol.uci.edu/WWWResources.html

At the end of the course, the student will be able to:

CO1	Understand the structural organization and function of living cells and should able to apply the cell signaling mechanism and its electrical activities.	K2, K3
CO2	Comprehension of the role of biomolecular conformation to function.	K1
CO3	Conceptual understanding of the function of biological membranes and also to understand the functioning of nervous system.	K2, K5
CO4	To know the effects of various radiations on living systems and how to prevent ill effects of radiations.	K1, K5
CO5	Analyze and interpret data from various techniques viz., spectroscopy, crystallography, chromatography etc.,	K4
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	•

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

Elective - List 3.3 CHARACTERIZATON OF MATERIALS

Subject Code	Subject Name	Catego ry	L	Т	Р	Credits	Inst. Hours	Marks
	CHARACTERIZATON OF MATERIALS	Elective						

Pre-Requisites

Fundamentals of Heat and Thermodynamics, Basics of Optical systems, Microscopic systems, Electrical measurements and Fundamentals of Spectroscopy.

- To make the students learn some important thermal analysis techniques namely TGA, DTA, DSC and TMA.
- To make the students understand the theory of image formation in an optical microscope and to introduce other specialized microscopic techniques.
- To make the students learn and understand the principle of working of electron microscopes and scanning probe microscopes.
- To make the students understand some important electrical and optical characterization techniques for semiconducting materials.
- To introduce the students the basics of x-ray diffraction techniques and some important spectroscopic techniques.

UNITS	Course Details
UNIT I	Introduction – thermogravimetric analysis (TGA) – instrumentation –
THERMAL ANALYSIS	determination of weight loss and decomposition products – differential thermal analysis (DTA)- cooling curves – differential

	scanning calorimetry (DSC) – instrumentation – specific heat capacity measurements – determination of thermomechanical parameters.
UNIT II MICROSCOPIC METHODS	Optical Microscopy: optical microscopy techniques – Bright field optical microscopy – Dark field optical microscopy – Dispersion staining microscopy - phase contrast microscopy –differential interference contrast microscopy - fluorescence microscopy - confocal microscopy - digital holographic microscopy - oil immersion objectives - quantitative metallography - image analyzer.
UNIT III ELECTRON MICROSCOPY AND SCANNING PROBE MICROSCOPY	SEM, EDAX, EPMA, TEM: working principle and Instrumentation – sample preparation –Data collection, processing and analysis- Scanning tunnelingmicroscopy (STEM) - Atomic force microscopy (AFM) - Scanning new field optical microscopy.

UNIT I ELECTRI METHODS OPTICA CHARACTER	V CAL S AND AL ZATION	Two probe and four probe methods- van der Pauw method – Hall probe and measurement – scattering mechanism – C-V characteristics – Schottky barrier capacitance – impurity concentration – electrochemical C-V profiling – limitations. Photoluminescence – light – matter interaction – instrumentation – electroluminescence – instrumentation – Applications.		
UNIT V X-RAY AND SPECTROSCOPIC METHODS UNIT VI: PROFESSIONAL COMPONENTS		Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman spectroscopy, ESR, NMR, NQR, XPS, AES and SIMS-proton induced X-ray Emission spectroscopy (PIXE) –Rutherford Back Scattering (RBS) analysis-application - Powder diffraction - Powder diffractometer -interpretation of diffraction patterns - indexing - phase identification - residual stress analysis - Particle size, texture studies - X-ray fluorescence spectroscopy - uses. Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism		
TEXT BOOKS	 R. A. Stradling and P. C. Klipstain. Growth and Characterization of semiconductors. Adam Hilger, Bristol, 1990. J. A. Belk. Electron microscopy and microanalysis of crystalline m Applied Science Publishers, London, 1999. Lawrence E. Murr. Electron and Ion microscopy and Microanalysis principles and Applications. Marcel Dekker Inc., New York, 1991 D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Priv Limited, New Delhi, 2002. Li, Lin, Ashok Kumar Materials Characterization Techniques Sam CRC Press,(2008). 			

	1. Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-
	Hall, (2001).
	2. Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic
REFERENCE	Imaging, Wiley-Liss, Inc. USA, (2001).
	3. Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advanced
BOOKS	Techniques for Materials Characterization, Materials Science Foundations
	(monograph series), Volumes 49 – 51, (2009). Volumes 49 – 51, (2009).
	4. Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986).
	5. Wachtman, J.B., Kalman, Z.H., Characterization of Materials,
	ButterworthHeinemann, (1993)
	1. https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf
WFB	2. http://www.digimat.in/nptel/courses/video/113106034/L11.html
SOUDCES	3. https://nptel.ac.in/courses/104106122
SUURCES	4. https://nptel.ac.in/courses/118104008

At the end of the course, the student will be able to:

CO1	Describe the TGA, DTA, DSC and TMA thermal analysis techniques and make	K1. K3
	interpretation of the results.	,
CO2	The concept of image formation in Optical microscope, developments in other	K)
	specialized microscopes and their applications.	112
CO3	The working principle and operation of SEM, TEM, STM and AFM.	K2, K3
CO4	Understood Hall measurement, four -probe resistivity measurement, C-V, I-V,	K3
	Electrochemical, Photoluminescence and electroluminescence experimental	кз, кл
	techniques with necessary theory.	174
CO5	The theory and experimental procedure for x- ray diffraction and some	KA K5
	important spectroscopic techniques and their applications.	м4,МЭ
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	•

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2

CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

Elective - List 3.4 DIGITAL COMMUNICATION

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	DIGITAL COMMUNICATION	Elective						

Pre-Requisite

Exposure to Fourier transform, pulse modulation, multiplexing, noises in communication signals

- > To understand the use of Fourier, transform in analyzing the signals
- > To learn about the quanta of transmission of information
- > To make students familiar with different types of pulse modulation
- > To have an in depth knowledge about the various methods of error controlling codes
- > To acquire knowledge about spread spectrum techniques in getting secured communication

UNITS	Course Details							
	Eourier transforms of gate functions, delta functions at the origin							
UNIT I:	delta function and periodic delta function – Properties of Fourier transform							
SIGNAL	– Frequency shifting –Time shifting - Convolution –Graphical							
ANALYSIS	representation – Convolution theorem – Time Convolution theorem –							
	Frequency Convolution theorem –Sampling theorem.							
UNIT II:	Communication system – Measurement of information – Coding – Bandot							
INFORMATION Code CCITT Code –Hartley Law – Noise in an information C								

THEORY	Channel- Effects of noise- Capacity of noise in a channel – Shannon Hartley theorem –Redundancy.						
UNIT III: PULSE MODULATION	Pulse amplitude modulation - natural sampling – Instantaneous sampling - Transmission of PAM Signals -Pulse width modulation – Time division multiplexing – Band width requirements for PAM Signals. Pulse Code Modulation –Principles of PCM –Quantizing noise – Generation and demodulation of PCM -Effects of noise –Companding – Advantages and application						
UNIT IV: ERROR CONTROL CODING	Introduction to Linear Block Codes, Hamming Codes, BCH Coding, RS Coding, Convolutional Coding, Coding Grain Viterbi Coding						
UNIT V: SPREAD SPECTRUM SYSTEMS	Pseudo Noise sequences, generation and Correlation properties, direct sequence spread spectrum systems, frequency HOP Systems, processing gain, anti-jam and multipath performance						
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism						

	1. B.P. Lathi, Communication system, Wiley Eastern.								
	2. George Kennedy, <i>Electronic Communication Systems</i> , 3 rd Edition,								
	Mc Graw Hill.								
TEXT	3. Simon Haykin, <i>Communication System</i> , 3 rd Edition, John Wiley & Sons.								
BOOKS	4. George Kennedy and Davis, 1988, Electronic Communication System, Tata								
	McGraw Hill 4 th Edition.								
	5. Taub and Schilling, 1991, "Principles of Communication System", Second								
	edition Tata McGraw Hill.								
1. John Proakis, 1995, Digital Communication, 3rd Edition, McGraw									
	Malaysia.								
	2. M. K. Simen, 1999, Digital Communication Techniques, Signal Design and								
	Detection, Prentice Hall of India.								
REFERENC	3. Dennis Roddy and Coolen, 1995, <i>Electronics communications</i> , Prentice Hall								
E BOOKS	of India IV Edition.								
	4. Wave Tomasi, 1998, "Advanced Electronics communication System" 4th								
	Edition Prentice Hall, Inc.								
	5. M.Kulkarni, 1988, "Microwave and Radar Engineering",								
	Umesh Publications.								
	1. <u>http://nptel.iitm.ac.in/</u>								
	2. <u>http://web.ewu.edu/</u>								
WEB	3. <u>http://www.ece.umd.edu/class/enee630.F2012.html</u>								
SOURCES	4. <u>http://www.aticourses.com/Advanced%20Topics%20in%20Digital%20Sign</u>								
	als								
	5. <u>http://nptel.iitm.ac.in/courses/117101051.html</u>								

At the end of the course, the student will be able to:

CO1	Apply the techniques of Fourier transform, convolution and sampling theorems in signal processing	K1, K3					
CO2	Apply different information theories in the process of study of coding of information, storage and communication	К3					
CO3	Explain and compare the various methods of pulse modulation techniques K4						
CO4	Apply the error control coding techniques in detecting and correcting errors- able to discuss, analyze and compare the different error control coding						
CO5	Apply, discuss and compare the spread spectrum techniques for secure communications	K3, k5					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	2	3
CO2	3	3	3	1	2	2	3	2	2	3
CO3	3	3	3	1	2	2	3	2	2	3
CO4	3	3	3	1	2	2	3	2	2	3
CO5	3	3	3	1	2	2	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	2	2	3
CO2	3	3	3	1	2	2	3	2	2	3
CO3	3	3	3	1	2	2	3	2	2	3
CO4	3	3	3	1	2	2	3	2	2	3
CO5	3	3	3	1	2	2	3	2	2	3

രുജരുജരുജ